THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

SCHOOL OF - to apply in all slides at the same time edit in Insert > Header & Footer

Selected Topics

David M. Morris, PT, PhD, FAPTA Professor and Chair UAB Department of PT

My Plan

- Research Selected Topics
 - Balance Dysfunction
 - Hip and Knee Dysfunction
 - Edema control
 - Stroke
- Lifestyle Medicine and Physical Therapy
 - Physical Activity
 - Healthy Eating
 - Smoking Cessation
 - Sleep Health

Research in Aquatics

David M. Morris, PT, PhD. FAPTA

Systematic Review Vs. Meta-nalysis

- Systematic Review attempts to gather all available empirical research by using clearly defined, systematic methods to obtain answers to a specific question.
- A meta-analysis the statistical process of analyzing and combining results from several similar studies.

Standard Mean Difference

- A summary statistic used when the studies in a meta-analysis assess the same outcome but measured it in different ways.
- Click <u>here</u>

Forest Plots

 Provides a quick graphical representation of the data coming from a meta-analysis, as well as numeric summaries to the left of the plot.

Click <u>here</u>

В

10

	AE			LE			Std. Mean Difference		Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
2.2.1 Healthy population	1									
Oh 2015_TUGT	-4.91	0.69	34	-4.89	0.82	32	7.9%	-0.03 [-0.51, 0.46]		
Oh 2021_TUGT	-7.42	1.26	34	-6.25	0.15	32	7.7%	-1.27 [-1.80, -0.74]		
Subtotal (95% CI)			68			64	15.6%	-0.64 [-1.86, 0.58]		
Heterogeneity: Tau ² = 0.71; Chi ² = 11.51, df = 1 (P = 0.0007); l ² = 91%										
Test for overall effect: Z =	= 1.03 (P	= 0.30))							
2.2.2 Nervous system di	iseases									
Kurt 2018_TUGT	-9.1	3.3	14	-11.5	2.6	15	7.0%	0.79 [0.03, 1.55]		
Pérez 2017_TUGT	-14.19	4.86	20	-13.15	8.97	20	7.5%	-0.14 [-0.76, 0.48]		
Pérez 2021_TUGT	-10.1	1.29	20	-10.7	3.46	15	7.3%	0.24 [-0.43, 0.91]		
Silva 2020_TUGT	-11.51	3.21	24	-11.51	2.42	25	7.7%	0.00 [-0.56, 0.56]		
Volpe 2014_TUGT	-9	1.4	17	-9	2.1	14	7.2%	0.00 [-0.71, 0.71]		
Volpe 2017_TUGT	-15.1	9.5	19	-14.5	7.1	19	7.4%	-0.07 [-0.71, 0.57]		
Subtotal (95% CI)			114			108	44.1%	0.10 [-0.17, 0.36]	•	
Heterogeneity: Tau ² = 0.0	00; Chi ² =	= 4.37,	df = 5	(P = 0.5	0); l ² =	0%				
Test for overall effect: Z =	0.70 (P	= 0.48	3)							
2.2.3 Musculoskeletal di	iseases									
Arnold 2010_TUGT	-11.5	2	13	-11.6	2.3	11	6.9%	0.05 [-0.76, 0.85]		
Hale 2012_TUGT	-13.67	5.2	15	-20.24	4.9	17	7.0%	1.27 [0.50, 2.04]		
Taglietti 2018_TUGT	-6.1	0.1	17	-6.8	0.2	18	5.4%	4.29 [3.03, 5.54]		
Subtotal (95% CI)			45			46	19.3%	1.81 [-0.27, 3.89]		
Heterogeneity: Tau ² = 3.1	4; Chi ² =	= 31.13	3, df = 2	2(P < 0.0)	00001); I ² = 94	1%			
Test for overall effect: Z =	= 1.70 (P	= 0.09	9)							
2.2.4 Cardiopulmonary	disease	S								
Adsett 2017_TUGT	-21.2	2.6	14	-23.6	2.8	14	7.0%	0.86 [0.08, 1.64]		
de Castro 2020_TUGT	-11	2	17	-12.8	3	17	7.2%	0.69 [-0.01, 1.38]		
Ferreira 2022_TUGT	-13.17	3.23	14	-15.58	3.65	11	6.8%	0.68 [-0.13, 1.50]		
Subtotal (95% CI)			45			42	21.1%	0.74 [0.30, 1.18]	◆	
Heterogeneity: Tau ² = 0.0	00; Chi ² =	= 0.13,	df = 2	(P = 0.9)	3); ² =	0%				
Test for overall effect: Z =	= 3.32 (P	= 0.00	009)							
Total (95% CI)			272			260	100.0%	0.44 [-0.04, 0.91]	· · · · · · · · · · · · · · · · · · ·	
Heterogeneity: Tau ² = 0.7	'0; Chi ² =	= 89.38	3, df = 1	13(P < 0)	.0000	1); l ² = 8	35%			
Test for overall effect: Z =	= 1.79 (P	= 0.07	7)					-4	Favours [LE] Favours [AE]	
Test for subgroup differences: Chi ² = 10.37, df = 3 (P = 0.02), l ² = 71.1%										
							\cup		0	

 \bigcirc

0

PEDro Scale

- The PEDro scale is an instrument to assess randomized, controlled trials
 - "poor" (scores 0-4),
 - "fair" (4–5),
 - "good" (6–8), and
 - "excellent" (9–10)

PEDro scale

1.	eligibility criteria were specified	no 🗆 yes 🗖	where:
2.	subjects were randomly allocated to groups (in a crossover study, subjects were randomly allocated an order in which treatments were received)	no 🗆 yes 🗖	where:
3.	allocation was concealed	no 🗆 yes 🗖	where:
4.	the groups were similar at baseline regarding the most important prognostic indicators	no 🗖 yes 🗖	where:
5.	there was blinding of all subjects	no 🗆 yes 🗖	where:
6.	there was blinding of all therapists who administered the therapy	no 🗆 yes 🗖	where:
7.	there was blinding of all assessors who measured at least one key outcome	no 🗆 yes 🗖	where:
8.	measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups	no 🗖 yes 🗖	where:
9.	all subjects for whom outcome measures were available received the treatment or control condition as allocated or, where this was not the case, data for at least one key outcome was analysed by "intention to treat"	no 🗆 yes 🗖	where:
10.	the results of between-group statistical comparisons are reported for at least or key outcome	ne no 🗆 yes 🗖	where:
11.	the study provides both point measures and measures of variability for at least one key outcome	no 🗆 yes 🗖	where:

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

Aquatic Therapy for Balance Dysfunction

David M. Morris, PT, PhD. FAPTA

Introduction

- No universal definition of posture and balance
- No agreement on the neural mechanisms underlying control of posture and balance
- Postural control emerges from interaction of individual with task and environment
- Postural control system is complex interaction of musculoskeletal and neural systems

Defining Postural Control

Postural control involves controlling body's position in space

- Postural orientation ability to maintain appropriate relationship between body segments and between the body and environment for a task
- **Postural stability** ability to control COM in relationship to the base of support

Postural Stability or Balance

- Ability to maintain the Center of Mass (COM) over the base of support.
- Vertical projection of COM is the Center of Gravity (COG).
- Requires:
 - ✓ Ability to maintain a position (static balance).
 - Stabilize during voluntary activities (dynamic balance).
 - React to external perturbations (static and dynamic).

Balance: Related Terms

- Balance reactions
- Postural reactions
- Postural Control
- Posture
- Equilibrium

Postural Control Requirements Vary with the Task and Environment

- Specific orientation and stability requirements vary according to task and environment
- Strategies used to accomplish postural control must adapt to varying task and environmental demands

COG projected outside of BOS

COG projected within BOS

COG projected within BOS

Copyright © 2007 Lippincott Williams & Wilkins.

Low Level Task

High Level Task

Cone of Stability

Motor Control of Quiet Stance

- Alignment
- Muscle tone
 - Intrinsic stiffness of muscles
 - Background muscle tone
 - Postural tone activation of antigravity muscles during quiet stance

Postural Tone

- Results from sensory input from multiple sensory systems
 - Cutaneous input from soles of feet
 - Somatosensory inputs form neck
 - Vestibular input
- Many muscles are tonically active in quiet stance; core stability muscles
 - Soleus and gastrocnemius
 - Tibialis antierior
 - Gluteus medius
 - Iliopsoas
 - Thoracic erector spinae (with intermittent activity of abdominals)

Copyright © 2007 Lippincott Williams & Wilkins.

Systems Underlying Balance

- Biomechanical Factors
- Motor Coordination
- Sensory Organization

Biomechanical Factors

- Strength
- Range of Motion
- Flexibility
- Muscle tone

Motor Coordination

Postural strategies (anteroposterior)
ankle, hip, stepping

Synergies

- coupling of groups of muscles so they act as a unit to produce strategies
- Combined with fine tuning of individual muscles

Anteroposterior Stability

- Ankle strategy
- Hip strategy
- Stepping strategy

Copyright © 2007 Lippincott Williams & Wilkins.

Ankle strategy

- Small perturbations
- Firm support surface

Hip Strategy

- Larger and faster perturbations
- Compliant surfaces
- Surfaces smaller than feet

Stepping Strategy

• When ankle or hip strategies are inadequate

Other postural strategies

- Mediolateral strategies
- Equilibrium responses
- Anticipatory Adjustments

Critical Characteristics of Motor Strategies

- Timing
- Sequence
- Reciprocal inhibition
- Force
- •When and where used

Higher-Level Cognitive Aspects

- Cognitive ≠ Conscious
- Adaptive postural control (Feedback)–
 - involves modifying sensory and motor systems in response to changing task and environmental demands
 - Results from external perturbation
- Anticipatory postural control (Feedforward)
 - pre-tuned sensory and motor systems based on previous experience and learning
 - Made in anticipation of a voluntary movement that is expected to be destabilizing.

Anticipatory Adjustments

- Prior to movement
- adjust "set", align COG
- adapts to task demands
- feedback & experience
 - Lets you know if it was successful
 - □ Allows you to fine tune for next movement

Fig. 1 Flow diagram of the study selection process according to Preferred Reporting Items for Systematic Reviews and meta-analysis (PRIAMA)

Deng et al., 2024

Fig.2 Funnel plot for all the meta-analyses

Inclusion Criteria

- Ages 60 and above
- Interventions involving AE with clear intervention details (duration, frequency, type and intensity)
- Control group was land-based
- Outcomes reported had at least 1 balance score and compared AE vs. LE
- RCTs
- In English

Table 1 Summary of Included studies

Study	Diagnosis		Intervention/ Comparison	Sample size pre (post)	Age (mean ± SD)
Bento et at, 2012	Healthy Populations	Healthy	AE LE	27 (24) 20 (14)	65.6 ± 4.2 65.6 ± 4.4
Bento-Torres et al, 2019		Healthy	AE LE	14 (14) 14 (14)	71.2 ± 4.4 71.7 ± 4.4
Bocalini et al, 2010		Healthy	AE LE	30 (27) 20 (18)	>62
Oh et al, 2015		Healthy	AE LE	40 (34) 40 (32)	74.7 ± 2.9 68.2 ± 4.4
Oh et al, 2021		Healthy	AE LE	40 (34) 40 (32)	74.7 ± 2.9 72.2 ± 4.4
Sanders et al, 2013		Healthy	AE LE	48 (43) 18 (17)	73.6 ± 13.5 72.8 ± 27.4
Vale et al, 2020		Sedentary Lifestyle	AE LE	28 (28) 26 (26)	67.3 ± 1.7 67.3 ± 1.7

Study	Water Depth	T°C	Min/Session	Times/ Week	Total Duration (weeks)	Outcome Measures
Bento et at, 2012	Xiphoid Level	28-30	60	3	12	6 MWT / 30 CST
Bento-Torre s et al, 2019	/	/	/	3	12	6 MWT / 30 CST
Bocalini et al, 2010	/	/	45	3	12	30 CST
Oh et al, 2015	1.2m	28	60	3	10	TUG
Oh et al, 2021	1.2m	28	60	3	10	TUG
Sanders et al, 2013	1.0-1.2m	28-29	45	3	16	30 CST
Vale et al, 2020	1.3 M	32	60	2	16	BBS

Study	Diagnosis		Intervention/ Comparison	Sample size pre (post)	Age (mean ± SD)
Kurt et al, 2018	Nervous system diseases	Parkinson	AE LE	20 (20) 20 (20)	62.4 ± 6.8 63.6 ± 7.2
Lee et al, 2018		Stroke	AE LE	19 (18) 18 (14)	57.6 ± 14.0 63.7 ± 11.3
Perez et al, 2017		Parkinson	AE LE	15 (14) 15 (15)	66.8 ± 5.3 67.5 ± 9.9
Perez et al, 2021		Stroke	AE LE	15 (15) 15 (17)	63.8 ± 13.6 62.7 ± 13.4
Silva et al, 2020	Nervous system diseases	Parkinson	AE LE	14 (14) 14 (11)	63.1 ± 13.6 64.2 ± 13.5
Volpe et al 2014		Parkinson	AE LE	17 (17) 17 (17)	68.0 ± 7.0 66.0 ± 8.0
Volpe et al 2017		Parkinson	AE LE	15 (13) 15 (11)	70.6 ± 7.8 67.3 ± 7.8
			\sim	\bigcirc	0

D

Study	Water Depth	D° T	Min/Session	Times/ Week	Total Duration	Outcome Measures
Kurt et al, 2018	1.2	32	60	5		BBS / TUG
Lee et al, 2018	/	30-33	30		4	BBS
Perez et al, 2017	1.4-1.45 m	30	45	2	10	BBS / TUG
Perez et al, 2021	1.4m	34-36	45	2	12	BBS/ TUG
Silva et al, 2020	/	/	60	2	10	BBS/ TUG
Volpe et al, 2014	/	/	60	5	8	BBS/ TUG
Volpe et al, 2017	/	/	60	5	8	BBS/ TUG

Study	Diagnosis		Intervention/ Comparison	Sample size pre (post)	Age (mean ± SD)
Arnold et al, 2008	Musculoskeletal diseases	НОА	AE LE	21 (16) 20 (15)	68.6 ± 5.4 69.1 ± 6.3
Arnold et al, 2010		НОА	AE LE	27 (19) 27 (19)	74.4 ± 7.5 75.8 ± 6.2
Assar et al, 2020		KOA	AE LE	12 (12) 12 (12)	57.5 ± 6.9 63.8 ± 7.5
Hale et al, 2012		OA	AE LE	23 (20) 16 (15)	62.1 ± 6.4 61.7 ± 6.9
Kuptniratsaikul et al, 2019	Nervous system diseases	KOA	AE LE	40 (40) 40 (40)	62.1 ± 6.4 61.7 ± 6.9
Moreira, et al, 2020		Muscle Disorder	AE LE	75 (60) 70 (60)	70.6 ± 6.0 71.9 ± 7.0
Murtezani, et al, 2014		Osteoporosis	AE LE	33 (31) 31 (31)	59.8 ± 6.0 60.7 ± 7.6

Study	Water Depth	T°C	Min/Session	Time/ Week	Total Duration	Outcome Measures
Arnold et al, 2008	Shoulder to waist	30	50	3	20	BBS
Arnold et al, 2010	Chest Level	/	45	2	11	6 MWT / BBS/ TUG/ 30 CST
Assar et al, 2020	1.3	32	90	3	8	BBS
Hale et al, 2012	1.3	28	60	2	12	TUGT
Kuptniratsaik ul et al, 2019	/	/	30	3	4	6 WMT
Moreira, et al, 2020	Xiphoid level	31	45	2	16	BBS
Murtezani, et al, 2014	Chest level	30	60	3	40	6 MWT / BBS

Study	Diagnosis		Intervention/ Comparison	Sample size pre (post)	Age (mean ± SD)
Taglietti et al, 2018	Musculoskeletal diseases	KOA	AE LE	31 (31) 29 (29)	67.3 ± 5.9 68.7 ± 6.7
Wang et al 2011		KOA	AE LE	28 (26) 28 (26)	66.7 ± 5.6 / 68.3 ± 5.6
Adset et al, 2017	Cardiopulmonary diseases	HF	AE LE	36 (29) 25 (22)	72.9 ± 8.4 68.3 ± 11.3
Caminti et al, 2011		HF	AE LE	11 (11) 10 (10)	67.0 ± 6.0 69.0 ± 8.0
de Castro et al, 2020		COPD	AE LE	27 (17) 23 (14)	64.0 ± 8.0 65.0 ± 8.0
Felcar, et al, 2018		COPD	AE LE	34 (20) 36 (16)	68.0 ± 8.0 69.0 ± 9.0
Ferreira et al, 2022		COVID-19	AE LE	26 (24) 26 (25)	70.2 ± 4.2 71.4 ± 4.6
Liu et al, 2021		COPD	AE LE	16 (14) 17 (15)	65.0 ± 11.0 65.0 ± 8.0
			-		

Study	Water Depth	С° Т	Min/Session	Time/ Week	Total Duration	Outcome Measures
Taglietti et al, 2018	1.2m	32	60	2	8	TUG
Wang et al 2011	/	30	60	3	12	6 MWT
Adset et al, 2017	Chest Level	33-34	60	1	16	6 MWT/TUG
Caminti et al, 2011	Xiphoid level	31	60	3	24	6 MWT
de Castro et al, 2020	1m	33	60	3	12	6 MWT/TUG
Felcar, et al, 2018	1m	33	60	3	24	6 MWT
Ferreira et al, 2022	1.4	27-32	60	2	16	TUG
Liu et al, 2021	Xiphoid level	26-30	60	2	12	6 MWT / 30CST

A

		AE			LE		:	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
1.1.1 Berg Balance So	cale								
Arnold 2008	49.4	3.8	14	37.9	4.2	14	2.1%	2.79 [1.71, 3.87]	-
Arnold 2010	50.2	4.6	13	49.2	5.1	11	2.3%	0.20 [-0.61, 1.01]	+
Assar 2020	51.2	3.1	17	43.9	6.1	17	2.3%	1.47 [0.70, 2.24]	
Kurt 2018	49.62	4.01	14	42.91	6.35	11	2.2%	1.26 [0.38, 2.13]	-
Lee 2018	43.8	9.9	15	26.71	6.3	17	2.2%	2.04 [1.16, 2.91]	-
Moreira 2020	44.1	7.5	15	47.9	4.8	15	2.3%	-0.59 [-1.32, 0.15]	
Murtezani 2014	21.5	3.94	15	22.73	3.6	14	2.3%	-0.32 [-1.05, 0.42]	-
Pérez 2017	52.1	3.3	60	41.3	1.9	60	2.4%	3.99 [3.36, 4.61]	. T
Pérez 2021	39.74	15.05	18	35.67	13.16	14	2.3%	0.28 [-0.42, 0.98]	1
Silva 2020	41	18	20	40	5.5	20	2.4%	0.07 [-0.55, 0.69]	
Vale 2020	45.9	5.2	10	48.7	5.2	10	2.2%	-0.52 [-1.41, 0.38]	
Volpe 2014	52.55	4.88	12	33.83	1.88	12	1.6%	4.89 [3.18, 6.60]	
Volpe 2017	30.5	5.1	19	30.9	3.8	19	2.4%	-0.09 [-0.72, 0.55]	T_
Subtotal (95% CI)			242			234	28.8%	1.13 [0.25, 2.00]	•
Heterogeneity: Tau ² = :	2.39; Chi	² = 193.	.35, df =	12 (P <	0.0000	1); ² =	94%		
Test for overall effect: 2	Z = 2.53 ((P = 0.0)1)						

1.1.2 Time Up to Go	Test							
Adsett 2017	-21.2	2.6	14	-23.6	2.8	14	2.3%	0.86 [0.08, 1.64]
Arnold 2010	-11.5	2	13	-11.6	2.3	11	2.3%	0.05 [-0.76, 0.85]
de Castro 2020	-11	2	17	-12.8	3	17	2.3%	0.69 [-0.01, 1.38]
Ferreira 2022	-13.17	3.23	14	-15.58	3.65	11	2.3%	0.68 [-0.13, 1.50]
Hale 2012	-13.67	5.2	15	-20.24	4.9	17	2.3%	1.27 [0.50, 2.04]
Kurt 2018	-9.1	3.3	14	-11.5	2.6	15	2.3%	0.79 [0.03, 1.55]
Oh 2015	-4.91	0.69	34	-4.89	0.82	32	2.5%	-0.03 [-0.51, 0.46]
Oh 2021	-7.42	1.26	34	-6.25	0.15	32	2.4%	-1.27 [-1.80, -0.74]
Pérez 2017	-14.19	4.86	20	-13.15	8.97	20	2.4%	-0.14 [-0.76, 0.48]
Pérez 2021	-10.1	1.29	20	-10.7	3.46	15	2.3%	0.24 [-0.43, 0.91]
Silva 2020	-11.51	3.21	24	-11.51	2.42	25	2.4%	0.00 [-0.56, 0.56]
Taglietti 2018	-6.1	0.1	17	-6.8	0.2	18	1.9%	4.29 [3.03, 5.54]
Volpe 2014	-9	1.4	17	-9	2.1	14	2.3%	0.00 [-0.71, 0.71]
Volpe 2017	-15.1	9.5	19	-14.5	7.1	19	2.4%	-0.07 [-0.71, 0.57]
Subtotal (95% CI)			272			260	32.3%	0.44 [-0.04, 0.91]
Heterogeneity: Tau ² = 0.70; Chi ² = 89.38, df = 13 (P < 0.00001); I ² = 85%								

Test for overall effect: Z = 1.79 (P = 0.07)

1.1.3 6 Minute Walking Test

Adsett 2017	386	75.8	26	381	70.4	26	2.4%	0.07 [-0.48, 0.61]
Arnold 2010	299.37	46.5	31	302.84	49.7	30	2.4%	-0.07 [-0.57, 0.43]
Beato 2012	486.07	78.52	14	451	62.09	15	2.3%	0.48 [-0.26, 1.22]
Bento-Torres 2019	308.8	81.6	40	325	79.5	40	2.5%	-0.20 [-0.64, 0.24]
Caminiti 2011	438.04	49.26	25	402.58	55.18	25	2.4%	0.67 [0.10, 1.24]
de Castro 2020	524	81	20	519	93	16	2.4%	0.06 [-0.60, 0.71]
Felcar 2018	527	83	17	532	71	14	2.3%	-0.06 [-0.77, 0.65]
Kuptniratsaikul 2019	568.8	111.1	14	457.5	64.8	14	2.3%	1.19 [0.37, 2.00]
Liu 2021	596.8	77.1	24	558.3	79.4	14	2.3%	0.48 [-0.19, 1.15]
Murtezani 2014	371.9	136.9	19	352.6	123.5	19	2.4%	0.14 [-0.49, 0.78]
Wang 2011	375.1	55.9	29	419.5	42	22	2.4%	-0.87 [-1.45, -0.29]
Subtotal (95% CI)			259			235	26.1%	0.13 [-0.16, 0.43]
Heterogeneity: Tau ² =	0 15 [.] Chi	$^{2} = 26.04$	1 df =	10 (P = 0)	004) 12	$^{2} = 62\%$		

Test for overall effect: Z = 0.89 (P = 0.38)

		1
	0	\bigcirc
0		

1.1.4 30s Chair Stand	d Test							
Arnold 2010	14.06	3.95	43	12.18	1.44	17	2.4%	0.54
Beato 2012	16.86	4.96	14	19.2	4.4	15	2.3%	-0.49
Bento-Torres 2019	23	0.8	27	14.6	0.6	28	1.2%	11.74 [
Bocalini 2010	18.4	3.7	14	12.8	1.4	14	2.2%	1.94
Liu 2021	14.58	2.1	24	12.23	1.36	14	2.3%	1.23
Sanders 2013	7.5	3.9	19	8.1	2.6	19	2.4%	-0.18
Subtotal (95% CI)			141			107	12.7%	2.02
Heterogeneity: Tau ² =	3.33; Chi ²	= 112.1	7, df =	5 (P < 0	.00001)	; l² = 96	5%	
Test for overall effect:	Z = 2.60 (P = 0.00	9)					

Total (95% Cl)914836100.0%Heterogeneity: Tau² = 1.19; Chi² = 462.55, df = 43 (P < 0.0001); l² = 91%</td>Test for overall effect: Z = 4.07 (P < 0.0001)</td>Test for subgroup differences: Chi² = 9.81, df = 3 (P = 0.02), l² = 69.4%

		AE			LE			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV. Random, 95% CI
1.1.1 Berg Balance So	cale								
Arnold 2008	49.4	3.8	14	37.9	4.2	14	1.9%	2.79 [1.71, 3.87]	
Arnold 2010	50.2	4.6	13	49.2	5.1	11	2.4%	0.20 [-0.61, 1.01]	
Assar 2020	51.2	3.1	17	43.9	6.1	17	2.4%	1.47 [0.70, 2.24]	
Kurt 2018	49.62	4.01	14	42.91	6.35	11	2.3%	1.26 [0.38, 2.13]	
Lee 2018	43.8	9.9	15	26.71	6.3	17	2.3%	2.04 [1.16, 2.91]	
Moreira 2020	44.1	7.5	15	47.9	4.8	15	2.5%	-0.59 [-1.32, 0.15]	
Murtezani 2014	21.5	3.94	15	22.73	3.6	14	2.5%	-0.32 [-1.05, 0.42]	-
Pérez 2017	52.1	3.3	60	41.3	1.9	60	0.0%	3.99 [3.36, 4.61]	
Pérez 2021	39.74	15.05	18	35.67	13.16	14	2.5%	0.28 [-0.42, 0.98]	-
Silva 2020	41	18	20	40	5.5	20	2.7%	0.07 [-0.55, 0.69]	+
Vale 2020	45.9	5.2	10	48.7	5.2	10	2.2%	-0.52 [-1.41, 0.38]	
Volpe 2014	52.55	4.88	12	33.83	1.88	12	1.2%	4.89 [3.18, 6.60]	
Volpe 2017	30.5	5.1	19	30.9	3.8	19	2.6%	-0.09 [-0.72, 0.55]	T .
Subtotal (95% CI)			182			174	27.5%	0.82 [0.17, 1.48]	•
Heterogeneity: Tau ² =	1.15; Chi	² = 87.4	8, df = 1	11 (P < 0	0.00001); I ² = 8	7%		

Test for overall effect: Z = 2.46 (P = 0.01)

		/
	0	\bigcirc
\sim		

1.1.2 Time Up to Go	Test
---------------------	------

Adsett 2017	-21.2	2.6	14	-23.6	2.8	14	2.4%	0.86 [0.08, 1.64]
Arnold 2010	-11.5	2	13	-11.6	2.3	11	2.4%	0.05 [-0.76, 0.85]
de Castro 2020	-11	2	17	-12.8	3	17	2.5%	0.69 [-0.01, 1.38]
Ferreira 2022	-13.17	3.23	14	-15.58	3.65	11	2.4%	0.68 [-0.13, 1.50]
Hale 2012	-13.67	5.2	15	-20.24	4.9	17	2.4%	1.27 [0.50, 2.04]
Kurt 2018	-9.1	3.3	14	-11.5	2.6	15	2.4%	0.79 [0.03, 1.55]
Oh 2015	-4.91	0.69	34	-4.89	0.82	32	2.9%	-0.03 [-0.51, 0.46]
Oh 2021	-7.42	1.26	34	-6.25	0.15	32	2.8%	-1.27 [-1.80, -0.74]
Pérez 2017	-14.19	4.86	20	-13.15	8.97	20	2.7%	-0.14 [-0.76, 0.48]
Pérez 2021	-10.1	1.29	20	-10.7	3.46	15	2.6%	0.24 [-0.43, 0.91]
Silva 2020	-11.51	3.21	24	-11.51	2.42	25	2.8%	0.00 [-0.56, 0.56]
Taglietti 2018	-6.1	0.1	17	-6.8	0.2	18	0.0%	4.29 [3.03, 5.54]
Volpe 2014	-9	1.4	17	-9	2.1	14	2.5%	0.00 [-0.71, 0.71]
Volpe 2017	-15.1	9.5	19	-14.5	7.1	19	2.6%	-0.07 [-0.71, 0.57]
Subtotal (95% CI)			255			242	33.4%	0.20 [-0.16, 0.57]
Heterogeneity: Tau ²	= 0.33; Chi ²	= 47.38	3, df =	12 (P < 0	.00001)	; l ² = 75	5%	

Test for overall effect: Z = 1.08 (P = 0.28)

-

Sensitivity Analysis

 Excluding trials with distinctly opposite direction change in each category

1.1.3 6 Minute Walking Test

Adsett 2017	386	75.8	26	381	70.4	26	2.8%	0.07 [-0.48, 0.61]
Arnold 2010	299.37	46.5	31	302.84	49.7	30	2.9%	-0.07 [-0.57, 0.43]
Beato 2012	486.07	78.52	14	451	62.09	15	2.5%	0.48 [-0.26, 1.22]
Bento-Torres 2019	308.8	81.6	40	325	79.5	40	2.9%	-0.20 [-0.64, 0.24]
Caminiti 2011	438.04	49.26	25	402.58	55.18	25	2.7%	0.67 [0.10, 1.24]
de Castro 2020	524	81	20	519	93	16	2.6%	0.06 [-0.60, 0.71]
Felcar 2018	527	83	17	532	71	14	2.5%	-0.06 [-0.77, 0.65]
Kuptniratsaikul 2019	568.8	111.1	14	457.5	64.8	14	2.4%	1.19 [0.37, 2.00]
Liu 2021	596.8	77.1	24	558.3	79.4	14	2.6%	0.48 [-0.19, 1.15]
Murtezani 2014	371.9	136.9	19	352.6	123.5	19	2.6%	0.14 [-0.49, 0.78]
Wang 2011	375.1	55.9	29	419.5	42	22	0.0%	-0.87 [-1.45, -0.29]
Subtotal (95% CI)			230			213	26.5%	0.22 [-0.03, 0.47]
I late as a set alter Tarr? -	0.00. 01:	2 - 44 7	- 16 -	0 /0 - 0	101.12 -	200/		

Heterogeneity: Tau² = 0.06; Chi² = 14.72, df = 9 (P = 0.10); $I^2 = 39\%$ Test for overall effect: Z = 1.74 (P = 0.08)

0	\bigcirc

1.1.4 30s Chair Stand Test Arnold 2010 12.18 14.06 3.95 1.44 2.7% 0.54 [-0.03, 1.11] 43 17 19.2 Beato 2012 16.86 4.96 14 4.4 15 2.5% -0.49 [-1.23, 0.25] Bento-Torres 2019 23 0.8 27 14.6 0.6 28 0.0% 11.74 [9.40, 14.08] 12.8 2.2% Bocalini 2010 18.4 3.7 14 1.4 14 1.94 [1.02, 2.87] 12.23 Liu 2021 14.58 2.1 24 1.36 14 2.5% 1.23 [0.51, 1.95] Sanders 2013 8.1 -0.18 [-0.81, 0.46] 7.5 3.9 19 2.6 19 2.6% Subtotal (95% CI) 114 79 12.6% 0.58 [-0.20, 1.36] Heterogeneity: Tau² = 0.65; Chi² = 24.52, df = 4 (P < 0.0001); l² = 84% Test for overall effect: Z = 1.46 (P = 0.15) Total (95% CI) 781 708 100.0% 0.41 [0.17, 0.65] Heterogeneity: Tau² = 0.44; Chi² = 183.79, df = 39 (P < 0.00001); l² = 79% -10 -5

Test for overall effect: Z = 3.41 (P = 0.0007)

Test for subgroup differences: $Chi^2 = 3.60$, df = 3 (P = 0.31), $I^2 = 16.8\%$

56

10

5

Favours [LE] Favours [AE]

		AE			LE			Std. Mean Difference	Std. Mean Difference
Study or Subaroup	Mean	SD	Total	Mean	SD	Total	Weight	IV. Random, 95% CI	IV. Random, 95% CI
2.1.1 Healthy populat	tion								
Vale 2020_BBS	45.9	5.2	10	48.7	5.2	10	9.1%	-0.52 [-1.41, 0.38]	
Subtotal (95% CI)			10			10	9.1%	-0.52 [-1.41, 0.38]	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 1.13	(P = 0.	26)						
2.1.2 Nervous system	n diseas	es							
Kurt 2018_BBS	49.62	4.01	14	42.91	6.35	11	9.1%	1.26 [0.38, 2.13]	
Lee 2018_BBS	43.8	9.9	15	26.71	6.3	17	9.1%	2.04 [1.16, 2.91]	
Pérez 2017_BBS	52.1	3.3	60	41.3	1.9	60	9.5%	3.99 [3.36, 4.61]	
Pérez 2021_BBS	39.74	15.05	18	35.67	13.16	14	9.4%	0.28 [-0.42, 0.98]	
Silva 2020_BBS	41	18	20	40	5.5	20	9.5%	0.07 [-0.55, 0.69]	
Volpe 2014_BBS	52.55	4.88	12	33.83	1.88	12	7.5%	4.89 [3.18, 6.60]	
Volpe 2017_BBS	30.5	5.1	19	30.9	3.8	19	9.5%	-0.09 [-0.72, 0.55]	
Subtotal (95% CI)			158			153	63.6%	1.70 [0.35, 3.06]	
Heterogeneity: Tau ² =	3.13; Ch	$ni^2 = 131$	1.88, df	= 6 (P ·	< 0.000	D1); I ² =	= 95%		
Test for overall effect:	Z = 2.46	(P = 0.	01)						
2.1.3 Musculoskeleta	I diseas	es							
Arnold 2008_BBS	49.4	3.8	14	37.9	4.2	14	8.8%	2.79 [1.71, 3.87]	
Arnold 2010_BBS	50.2	4.6	13	49.2	5.1	11	9.2%	0.20 [-0.61, 1.01]	
Assar 2020_BBS	51.2	3.1	17	43.9	6.1	17	9.3%	1.47 [0.70, 2.24]	
Subtotal (95% CI)			44			42	27.3%	1.45 [0.08, 2.81]	
Heterogeneity: Tau ² =	1.25; Cł	$ni^2 = 14.$	62, df =	= 2 (P =	0.0007); $I^2 = 8$	6%		
Test for overall effect:	Z = 2.08	(P = 0.	04)						
2.1.4 Cardiopulmona	ry disea	ises							
Subtotal (95% CI)			0			0		Not estimable	
Heterogeneity: Not ap	plicable								
Test for overall effect:	Not app	licable							
Total (95% CI)			212			205	100 0%	1 42 10 46 2 391	
Hotorogonoity: Tou2 =	2 46. 01	12 - 161	1 44 45	- 10 /8	- 0.000	2011:12	- 04%	1.42 [0.40, 2.33]	
Test for everall effect:	7 - 2 90	(B - 0	004)	0 (F	- 0.000		/6		-4 -2 0 2 4
Test for subgroup diffe	2 - 2.05	$Chi^2 = 0$	2 80 df	= 2 (P =	= 0.007	$1^2 = 7^2$	9 6%		Favours [LE] Favours [AE]
Test for subgroup diffe	erences:	Chi ² = 9	9.80, df	= 2 (P =	= 0.007	$1^2 = 7^2$	9.6%		Favours [LE] Favours [AE]

		AE			LE		1	Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2.3.1 Healthy population									
Beato 2012_6 MWT	486.07	78.52	14	451	62.09	15	7.8%	0.48 [-0.26, 1.22]	
Bento-Torres 2019_6 MWT	308.8	81.6	40	325	79.5	40	11.3%	-0.20 [-0.64, 0.24]	
Subtotal (95% Cl)			54			55	19.1%	0.07 [-0.58, 0.73]	-
Heterogeneity: Tau ² = 0.14; Cł	ni² = 2.42,	df = 1 (P = 0.1	2); l ² = 5	9%				
Test for overall effect: Z = 0.22	2 (P = 0.82	:)							
2.3.2 Nervous system diseas	es								
Subtotal (95% CI)			0			0		Not estimable	
Heterogeneity: Not applicable									
Test for overall effect: Not app	licable								
2.3.3 Musculoskeletal diseas	ies								14 A
Arnold 2010 6 MWT	299.37	46.5	31	302.84	49.7	30	10.5%	-0.07 [-0.57, 0.43]	
Kuptniratsaikul 2019_6 MWT	568.8	111.1	14	457.5	64.8	14	7.0%	1.19 [0.37, 2.00]	· · · · · · · · · · · · · · · · · · ·
Murtezani 2014_6 MWT	371.9	136.9	19	352.6	123.5	19	8.9%	0.14 [-0.49, 0.78]	800 B
Wang 2011_6 MWT	375.1	55.9	29	419.5	42	22	9.5%	-0.87 [-1.45, -0.29]	
Subtotal (95% CI)			93			85	36.0%	0.06 [-0.68, 0.79]	-
Heterogeneity: Tau ² = 0.46; Cł	ni² = 16.86	, df = 3	(P = 0.	0008); l ²	= 82%				
Test for overall effect: Z = 0.16	6 (P = 0.88	5)							
2.3.4 Cardiopulmonary disea	ises								
Adsett 2017_6 MWT	386	75.8	26	381	70.4	26	10.0%	0.07 [-0.48, 0.61]	
Caminiti 2011_6 MWT	438.04	49.26	25	402.58	55.18	25	9.7%	0.67 [0.10, 1.24]	
de Castro 2020_6 MWT	524	81	20	519	93	16	8.6%	0.06 [-0.60, 0.71]	
Felcar 2018_6 MWT	527	83	17	532	71	14	8.1%	-0.06 [-0.77, 0.65]	
Liu 2021_6MWT	596.8	77.1	24	558.3	79.4	14	8.5%	0.48 [-0.19, 1.15]	
Subtotal (95% CI)			112			95	44.9%	0.26 [-0.02, 0.54]	•
Heterogeneity: Tau ² = 0.00; Ch	ni² = 4.03,	df = 4 (P = 0.4	0); l ² = 1	%				
Test for overall effect: Z = 1.82	2 (P = 0.07)							
Total (95% CI)			259			235	100.0%	0.13 [-0.16, 0.43]	◆
Heterogeneity: Tau ² = 0.15; Cł	ni² = 26.04	, df = 1	0 (P = 0	0.004); l ²	= 62%			1997 - 19	
Test for overall effect: Z = 0.89	(P = 0.38)							
Test for subgroup differences:	$Chi^{2} = 0.4$	4, df =	2 (P = 0).80), l ² =	0%				Favours [LE] Favours [AE]

D

		AE .			LE .			Stil. Nean Difference	81d. Hear Difference
Study or Subaroup	Reat	80	Tetal	Magn	80	Total	Weight	IV, Random, 95% Cl.	N. Raydors, 69N Cl
2.4.1 Healthy population									
Baato 2012_30 CST	16.86	4.96	- 14	19.2	4.4	16	17.4%	-8.4951.23, 0.26	*
Banto-Torres 2016_30 CST	- 28	0.8	27	54.8	- 2.6	28	12.7%	11.74 (8.40, 14.98)	200 C
Bocalini 2010_30 CST	18.4	3.7	16	12.8	1.14	14	17.8%	1.04 [1.02, 2.87]	-
Sanders 2013_30 C8T	7.8	3.9	19	8.1	2.6	. 19	12.8%	4.18 0.81, 0.48	*
Subtotal (95% CI)			74			75	94.0%	2.94 [0.19, 5.68]	-
Heleropeneity: Teu ⁴ = 7.42; C	29 = 13	1.38, 6	1-312	< 0.00	0011-1	*= 975	1000 C		100
Test for overall effect. Z = 2.0	0 (P = 0	94)							
2.4.2 Nervous system dises									
Subtotal (RS% CI)			0			- 0		Not estimable	
telerogeneity: Not applicable	0203								
Test for overall effect. Not sp	alcable								
2.4.3 Musculoskolatal disea									
Arroid 2010_30 DST	14.08	3.95	43	12.15	1.44	17	17.7%	0.54 (-0.03, 1.11)	1 C
Buildotal (85% CI)			43			17	17.7%	8.54 4.83, 1.11)	
leterogeneity: Not applicable									
Teat for overall effect Z = 1.8	5 (P = 0	06)							
24.4 Cerdiopuleronary dise									1 24
la 2021_30 CST	14.58	2.1	- 24	12.20	136	14	17.5%	1.23 (0.51, 1.95)	
Subtolal (95% CI)			24			14	17.5%	1.23 (0.51, 1.95)	•
Heterogeneity: Not applicable	Č								10
Test for overall affect Z = 3.3	5(P=0	3008)							100
Fotal (85% Cit			141			167	100.0%	2.02 [0.50, 3.54]	★ 0.00
Heteroperative Tex? = 3.354 C	22 - 12	er i	1.50	<0.00	0010	1.444			+ + + + + + + + + + + + + + + + + + + +

В

 \bigcirc

100

		AE			LE			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
2.2.1 Healthy population	n								
Oh 2015_TUGT	-4.91	0.69	34	-4.89	0.82	32	7.9%	-0.03 [-0.51, 0.46]	
Oh 2021_TUGT	-7.42	1.26	34	-6.25	0.15	32	7.7%	-1.27 [-1.80, -0.74]	
Subtotal (95% CI)			68			64	15.6%	-0.64 [-1.86, 0.58]	
Heterogeneity: Tau ² = 0.7	1; Chi2 =	= 11.51	1, df = '	I (P = 0.0)	0007);	$ ^2 = 91^{\circ}$	%		
Test for overall effect: Z =	= 1.03 (P	= 0.30))						
2.2.2 Nervous system d	iseases								
Kurt 2018 TUGT	-9.1	3.3	14	-11.5	2.6	15	7.0%	0.79 [0.03, 1.55]	
Pérez 2017 TUGT	-14.19	4.86	20	-13.15	8.97	20	7.5%	-0.14 [-0.76, 0.48]	
Pérez 2021 TUGT	-10.1	1.29	20	-10.7	3.46	15	7.3%	0.24 [-0.43, 0.91]	
Silva 2020 TUGT	-11.51	3.21	24	-11.51	2.42	25	7.7%	0.00 [-0.56, 0.56]	
Volpe 2014 TUGT	-9	1.4	17	-9	2.1	14	7.2%	0.00 [-0.71, 0.71]	+
Volpe 2017 TUGT	-15.1	9.5	19	-14.5	7.1	19	7.4%	-0.07 [-0.71, 0.57]	
Subtotal (95% CI)			114			108	44.1%	0.10 [-0.17, 0.36]	◆
Heterogeneity: Tau ² = 0.0	00; Chi ² =	= 4.37.	df = 5	(P = 0.5)	0); ² =	0%			
Test for overall effect: Z =	= 0.70 (P	= 0.48	3)	•					
2.2.3 Musculoskeletal d	iseases								
Arnold 2010 TUGT	-11.5	2	13	-11.6	2.3	11	6.9%	0.05 [-0.76, 0.85]	
Hale 2012 TUGT	-13.67	5.2	15	-20.24	4.9	17	7.0%	1.27 [0.50, 2.04]	
Taglietti 2018 TUGT	-6.1	0.1	17	-6.8	0.2	18	5.4%	4.29 [3.03, 5.54]	_ >
Subtotal (95% CI)			45			46	19.3%	1.81 [-0.27, 3.89]	
Heterogeneity: Tau ² = 3.1	4; Chi ² =	= 31.13	3, df = 2	2 (P < 0.	00001); l ² = 94	4%		
Test for overall effect: Z =	= 1.70 (P	= 0.09	9)						
2.2.4 Cardiopulmonary	disease	s							
Adsett 2017 TUGT	-21.2	2.6	14	-23.6	2.8	14	7.0%	0.86 [0.08, 1.64]	
de Castro 2020 TUGT	-11	2	17	-12.8	3	17	7.2%	0.69 [-0.01, 1.38]	
Ferreira 2022 TUGT	-13.17	3.23	14	-15.58	3.65	11	6.8%	0.68 [-0.13, 1.50]	
Subtotal (95% CI)			45			42	21.1%	0.74 [0.30, 1.18]	•
Heterogeneity: Tau ² = 0.0	00; Chi ² =	= 0.13,	df = 2	(P = 0.9)	3); ² =	0%			- C 500
Test for overall effect: Z =	= 3.32 (P	= 0.00	009)	3	641				
Total (95% CI)			272			260	100.0%	0.44 [-0.04, 0.91]	•
Heterogeneity: Tau ² = 0.7	70; Chi ² =	= 89.38	3. df = 1	13(P < 0)	0000.	1): $ ^2 = 8$	85%		
Test for overall effect: Z =	= 1.79 (P	= 0.07	7)	1979 N. 1999				-4	
Test for subgroup differer	nces: Ch	i² = 10	.37, df	= 3 (P =	0.02),	I ² = 71.	1%		Favours [LE] Favours [AE]
na manananya dikana dikana penyenya dikana dikan									
							\cup		60

D

		AE			LE .			Shi. Mean Difference	81d. Near Difference
Study or Subaroup	Rear	80	Tetal	Magin	80	Total	Weight	IV, Rendom, 95% Cl	IV. Ravdors, 69N Cl
2.4.1 Healthy population									
Baato 2012_30 CST	16.86	4.96	- 14	19.2	4.4	16	17.4%	-0.4951.23, 0.26	-
Banto-Tarres 2018 30 CST	28	0.8	27	54.6	2.6	28	12.7%	11.74(8.40, 14.08)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
kocalini 2010 30 CST	18.4	3.7	16	12.8	1.4	14	17.0%	1.04 (1.02, 2.87)	-
anders 2013 30 CST	7.6	3.9	19	8.1	2.6	19	12.8%	-0.18[-0.81, 0.46]	*
ubtotal (95% CI)			74			75	94,8%	2.94 [0.19, 5.68]	-
teteropeneity: Teu ⁴ = 7.42; C	21 = 10	9.38.6	1-30	×<0.00	0011-1	P = 975			
iosi for overall effect. Z = 2.0	10 (P = 0	94)	9990						
A.2 Nervous system dises									
Jubtotal (95% Ci)			0					Not extinable	
leteropeneity: Not applicable	0000								
left for overall effect. Not ap	plicable								
.4.3 Musculoskeletal class									
moid 2010 30 CIST	14.08	3.95	43	12.15	1.44	17	17.7%	0.54(-0.03, 1.11)	-
ulatotal (85%, CE)			43			17	17,7%	0.54 [-0.03, 1.11]	
leteropeneity: Not applicable									
sat for overall effect Z = 1.8	15 (P = 0	96)							
4.4 Cardiopulmonary dise									
a 2021 30 CST	14.58	2.1	24	12.23	136	14	17.5%	1.23 (0.51, 1.95)	+
latitional (85% Ci)	1000	120	24			14	17,5%	1.23 (0.51, 1.95)	+
intercogrameity: Not applicable	÷		- 73						18
lest for overall affect, Z = 3.3	15 (P = 0	3006)							
Iotal (85% Cit			141			107	100.0%	2.02 [1.50, 1.54]	★ 10
elenoperativ Teu ² = 3.35 C	22112	247.6	1-50	< 0.00	001) I	P = 965		1	1 1 1 1 1
ant for owned affect 7 = 2.8	0 P a d	0061					2		-10 -5 0 5 10
and for a determine differences	OPE	6 44 1	1-24		Par	10.04			Fevours [LE] Forours [AE]

Other thoughts on balance recovery using water?

What are your "go to" strategies?

Any new ideas after seeing the research?

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM. Aquatic Therapy for **Hip and Knee Dysfunction with** Osteoarthritis

David M. Morris, PT, PhD. FAPTA

Osteoarthritis

- Most common form of Arthritis
- Most frequently in hips, knees and hands
- Women > Men
- 10th on Disability Cause List
- 5th in US health care economic list
- All Guidelines STRONGLY recommend
 physical exercise

Most Affected Sites

Knee OA

- Worldwide Most common single cause of lower limb disability in adults over 50
- Usually bilateral with one side more affected
- Pain
 - Anteromedial or more generalized on medial-compartment of tibiofemoral joint
 - Anterior in patellofemoral joint
 - Distal radiation
 - Rarely posterior unless popliteal (Baker's) cysts are present

Knee OA - Symptoms

Category	Symptoms
Pain	 Affects one or a few joints at a time Insidious onset - slow progression over years Variable intensity May be intermittent Increased by joint use and relieved by rest Night pain in severe osteoarthritis
Stiffness	Short-lived (<30 minutes) and early morning- or inactivity-related
Swelling	Some (eg, nodal osteoarthritis) patients present with swelling and/or deformity
Constitutional Symptoms	Absent

Knee OA – Physical Findings	
Appearance	 Swelling (bony overgrowth ± fluid/synovial hypertrophy) Deformity Muscle wasting (global - all muscles acting over the joint)
Palpation	 Absence of warmth Swelling (effusion if present is usually small and cool) Joint line tenderness Periarticular tenderness (especially knee, hip)
Range of Motion	 Crepitus (knee, thumb bases) Reduced range of movement Weak local muscles

Knee OA – History Findings

• Exacerbated by:

- Prolonged sitting
- Standing from a low chair
- Climbing stairs or inclines (going down is often worse)
- Persistent night pain "keeps them awake"

• Reports of "giving way"

Patient with right hip OA, showing fixed flexion and external rotation deformity

Hip OA

- Hip OA presents with pain, aching, stiffness, and restricted movement
- Pain usually felt deep in the anterior groin but may involve the anteromedial or upper lateral thigh and occasionally the buttocks
- Distal radiation not uncommon-distal thigh and/or knee pain without any proximal symptoms
- Frequently unilateral
- Both active and passive hip movements are equally painful
- Internal rotation with the hip flexed is frequently the earliest and most affected movement

Hip OA

- Pain is exacerbated particularly by rising from a seated position and during the initial phases of ambulation
- Wasting of thigh muscles
- Positive Trendelenburg test
- Shortening of the affected extremity may also be present

Exercise in the Aquatic Environment for People With Primary Hip Osteoarthritis: A Systematic Review and Meta-analyses

Paula Richley Geigle, PT, MS, PhD; Anita Van Wingerden, PT, DPT; Marti Biondi, PT, DPT, CSCS; Janet Gangaway, PT, DPT, OCS, LAT; Stephen Modica, MLS; David Morris, PT, PhD, FAPTA; Yasser Salem, PT, PhD, PCS, NCS; Lori Thein Brody, PT, PhD, LAT, SCS

Inclusion Criteria

- People with Hip OA
- >18 years
- Reported AE interventions as main interventions
- Within last 15 years
- Included physical performance, functional performance, or health-related QOL

	Score Ou of 10
RCIs	11 N
Arnold et al ¹⁰	6
Cochrane et al ¹¹	7
Fransen et al ¹²	7
Hale et al ¹³	8
Hinman et al ¹⁴	8
Wang et al ¹⁵	8
Rahman et al ¹⁶	7
Non-RCTs	
Wallis et al ¹⁷	7
Lin et al ¹⁸	7

T	Ά	B	L	Е	3

PEDro Scores

Intervention

Control

Author	Study Type	Year	n	Joint	Training Types	Training time/ wk,min	Training Duration, wk	n	Туре
Arnold et al	RCT	2011	28	Hip	AE+ Education	2 X 45	11	26	AE
Cochrane et al	RCT	2005	153	Hip & Knee	AE	2 X 60	52	159	none
Fransen et al	RCT	2007	55	Hip or Knee	AE	2 X 60	12	56 &41	Tai chi & wait-list
Hale et al	RCT	2012	23	Hip and/or Knee	AE	2 X 20-60	12	16	Computer Skills training
Hinman et al	RCT	2006	36	Hip or knee	Aquatic PT	2 X 45-60	6	35	None

LE Function Outco	me
-------------------	----

Author	ROM	Strength	Gait (Speed or Endurance)	LE Function	Balance	Pain	QOL
Arnold et al			6MWT	30sSTS	TUG, BBS, ABS, MCTSIB		
Cochrane et al		Isometric HS, Isometric Quads	8 –ft Walk Test	WOMAC, Function SF-36 Function Ascend 4 Stair (s) Decend 4 stair (s)		WOMAC pain, WOMAC Stiffness, SF-36 Pain	EQ Vas SF-36 All/Aggregat e
Fransen et al			50 Ft Walk Test	WOMAC Function Full Flight Stair Climb(s)	TUG	WOMAC Pain, WOMAC Stiffness	SF-12
Hale et al		PPA Strength		WOMAC Function	TUG, ABS, PPA- no strength, lateral Strep test	WOMAC Pain, WOMAC Stiffness	AIMS2-SF
Hinman et al		Isometric Quads, Isometric Hip Abs	6MWT	WOMAC Function, PASE Scale	TUG, Strep – Tap Test	VAS, WOMAC Pain, WOMAC Stiffness	AQL Scale

Studyname			Statistics I	or each st	udy					
	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value			
Arnold et al., 2011	0.512	0.278	0.077	-0.032	1.056	1.843	0.065		1	+
Cochrane et al., 2005	0.117	0.113	0.013	-0.105	0.339	1.034	0.301			-
Fransen et al., 2007	0.397	0.194	0.038	0.017	0.777	2.048	0.041			-
Hale et al., 2012	0.310	0.320	0.103	-0.317	0.938	0.969	0.333			-
Hinman et al., 2007	0.368	0.241	0.058	-0.105	0.841	1.525	0.127			-
Rahmann et al., 2009	0.637	0.262	0.069	0.123	1.151	2.430	0.015			
Wang et al., 2006	0.429	0.328	0.107	-0.213	1.072	1.311	0.190			-
Wallis et al., 2014	0.224	0.313	0.098	-0.391	0.838	0.713	0.476			-
Lin et al., 2004	0.353	0.206	0.042	-0.051	0.756	1.714	0.087			-
	0.294	0.070	0.005	0.157	0.432	4.187	0.000			
								-2.00	-1.00	0.0

00 -1.00 0.00 1.00 2.00 Favours A Favours B

Fig. 2. Postintervention effect on overall outcomes (RCTs and non-RCTs). RCT indicates randomized controlled trial.

Study name			Statistics	for each	study			
	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	
Amold et al., 2011	0.473	0.275	0.076	-0.067	1.012	1.716	0.086	
Fransen et al., 2007	0.377	0.192	0.037	0.000	0.754	1.960	0.050	
Hale et al., 2012	0.435	0.328	0.108	-0.208	1.079	1.327	0.185	
Hinman et al., 2007	0.217	0.235	0.055	-0.244	0.678	0.923	0.356	
Rahmann et al., 2009	0.578	0.258	0.066	0.073	1.083	2.245	0.025	
	0.400	0.110	0.012	0.185	0.616	3.641	0.000	
								-2.00

Fig. 3. Postintervention effect on balance.

-1.00

Favours A

0.00

Study name			Statistics f	or each st	ludy							
	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value					
Jochrane et al., 2005	0.202	0.113	0.013	-0.019	0.423	1.787	0.074			+		
Hale et al., 2012	0.177	0.311	0.096	-0.432	0.786	0.570	0.568				-	
Hinman et al., 2007	0.258	0.234	0.055	-0.200	0.716	1.105	0.269			+	-	
Rahmann et al., 2009	0.561	0.258	0.067	0.056	1.067	2,176	0.030			-		
Nang et al., 2006	0.567	0.337	0.114	-0.094	1.228	1.683	0.092			-		
in et al., 2004	0.301	0.205	0.042	-0.101	0.702	1.469	0.142			+	-	
	0.278	0.080	0.006	0.120	0.435	3.455	0.001			•		
								-2.00	-1.00	0.00	1.00	2.00
									Favours A		Favours B	

Fig. 4. Postintervention effect on muscle strength.

2.00

1.00

Favours B

(

Fig. 5. Postintervention effect on range of motion.

Fig. 6. Postintervention effect on pain (RCTs and non-RCTs). RCT indicates randomized controlled trial.

2.00

Fig. 7. Postintervention effect on gait (RCT and non-RCT). RCT indicates randomized controlled trial.

Fig. 8. Postintervention effect on quality of life (RCT and non-RCT). RCT indicates randomized controlled trial.

Fig. 9. Postintervention effect on self-reported function (RCT and non-RCT). RCT indicates randomized controlled trial.

Ma et al. Journal of Orthopaedic Surgery and Research (2022) 17:190 https://doi.org/10.1186/s13018-022-03069-6

RESEARCH ARTICLE

Journal of Orthopaedic Surgery and Research

Overall treatment effects of aquatic physical therapy in knee osteoarthritis: a systematic review and meta-analysis

Ji Ma¹, Xiaoyu Chen², Juan Xin¹, Xin Niu¹, Zhifang Liu^{3*} and Qian Zhao^{3*}

	Low risk o	fbias	1	Unclea	ar risk of bia	s	Hig	h risk of bia	s	
_						0%	25%	50%	75%	100%
					Other bias					
		Sel	ective rep	orting (rep	orting bias)					
		Incomple	ete outcon	ne data (at	trition bias)					
	Blindin	g of outcom	ne assess	ment (det	ection bias)					
BI	inding of parti	cipants and	d personn	el (perform	nance bias)					
		Allocation	n conceal	Iment (sele	ection bias)					
	rvan	Join Seque	nce gener	auchi (sen	courri bias)	_			_	_

Inclusion Criteria

- People with Knee OA
- <u>></u> 40 years
- No medical conditions to prevent physical activity
- No organized exercise program in last 3 months
- •RCT

Table 1 Characteristics of studies included in the meta- analysis

First Author	Country of study	ne1/nc1 ne2/nc2	Experimental Group (type of exercise)	Control Group (type of exercise)	Intervention Time	Outcome Measures
Dias	Brazil	33/32	Aquatic exercise and an educational Protocol	An educational Protocol	Six Weeks	WOMAC muscle strength Power and resistance
Silva	Brazil	32/32	Aquatic Physical Therapy	Land – Based Exercise	18 Weeks	Lequesne Index Scores WOMAC, VAS, 50FWT
Kars Fertelli	Turkey	60/60	Aquatic Physical Therapy	Not receive any intervention	8 Weeks	WOMAC, ASS Muscle strength
Hale	New Zealand	23/16	Aquatic Physical Therapy	Computer Skills Training	6 Weeks	Falls risk ratio Step test, TUGT, ABC Scale AIMS2-SF 26, WOMAC
Hinman	Australia	36/35	Aquatic Physical Therapy	Usual Care	8 Weeks	VAS, WOMAC, AQOL, PASE Muscle strength step test, TUGT, 6MWT

First Author	Country of study	ne1/nc1 ne2/nc2	Experimental Group (type of exercise)	Control Group (type of exercise)	Intervention Time	Outcome Measures
Lim	Korea	24/22 24/22	Aquatic Physical Therapy	Land-based exercise Home-based exercise	8 Weeks	Body weight, BMI, lean body mass, body fat mass, body fat proportion, abdominal fat, BPI WOMAC SF-36 Peak torque, knee extensor and flexor
Lund	Denmark	27/25 27/27	Aquatic Physical Therapy	Land-based exercise Not receive any intervention	8 Weeks	VAS KOOS
Rantalainen	Findland	60/60	Aquatic Physical Therapy	Usual Care	16 Weeks	T2 relaxation time, DGEMRIC index Cardiorespiratory fitness, force KOOS
Suomi	WI	10/10 10/10	Aquatic Physical Therapy	Land-based exercise Not receive any intervention	8 Weeks	Flexibility, hand-eye coordination Right arm curls, Left arm curls RSHab isometric, LSHab isometric, LHab isometric Functional capacity evaluation

-

First Author	Country of study	ne1/nc1 ne2/nc2	Experimental Group (type of exercise)	Control Group (type of exercise)	Intervention Time	Outcome Measures
Tagletti	Brazil	31/29	Aquatic Physical Therapy	Educational Program	8 Weeks	VAS, WOMAC, SF-36 Depression, TUGT
Waller	Finland	43/44	Aquatic Physical Therapy	Usual Care	4 Months	Walking speed, body mass, BMI, lean mass, fat mass KOOS
Wang	USA	20/18	Aquatic Physical Therapy	Usual Care	12 Weeks	Flexibility, muscle strength 6MWT, MDHAQ, VAS
Wang	Taiwan	26/26 26/26	Aquatic Physical Therapy	Land-based exercise Not receive any intervention	12 Weeks	KOOS, ROM, 6MWT

Comparison 1. WOMAC stiffness: aquatic physical therapy versus no aquatic physical therapy

	Aquat	ic exer	cise	No aquatic exercise				Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean SD To		Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI	
Hale L A 2012	3.7	1.47	20	3.4	1.45	15	26.6%	0.20 [-0.47, 0.87]		
Hinman RS 2007	73	45	36	95	44	35	34.5%	-0.49 [-0.96, -0.02]		
Kars Fertelli 2019	2	2.13	60	5.52	5.87	60	38.9%	-0.79 [-1.16, -0.42]	-	
Total (95% CI)			116			110	100.0%	-0.42 [-0.94, 0.09]	•	
Heterogeneity: Tau ²	= 0.14; Ch	i ² = 6.4	8, df = 2	(P=0.04); # = 69	%		H		\rightarrow
Test for overall effect	Z=1.62	(P = 0.1	10)						Favours (aquatic) Favours (no aquatic)	•

Comparison 2. KOOS symptoms: aquatic physical therapy versus no aquatic physical

therapy

	Aquat	tic exer	cise	No aqu	atic exer	cise		Mean Difference		Mean	Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	_	IV, Fix	ed, 95% CI		
Lund H 2008	64.6	12	27	61.4	11.96	27	17.4%	3.20 [-3.19, 9.59]		-		_	
Lund H 2008	64.6	12	27	66.9	11.5	25	17.4%	-2.30 [-8.69, 4.09]			-		
Rantalainen 2016	81	11.57	42	77	11.57	42	29.0%	4.00 [-0.95, 8.95]					
Waller B 2017	80.9	12.1	43	77.5	14.9	44	21.9%	3.40 [-2.30, 9.10]				_	
Wang TJ 2011	69	20	26	61	17	26	7.0%	8.00 [-2.09, 18.09]					_
Wang TJ 2011	69	20	26	71	16	26	7.3%	-2.00 [-11.84, 7.84]				7	
Total (95% CI)			191			190	100.0%	2.47 [-0.19, 5.14]			٠		
Heterogeneity: Chi ² =	4.61, df	= 5 (P =	0.47); P	*= 0%					-20	-10	0	10	20
Test for overall effect	Z=1.82	(P=0.0)7)							Favours (no aquati	c] Favours	aquatic]	
ig. 5 Forest plot of	aquatic	physica	therap	by versus	s no aqu	atic phy	ysical the	rapy interventions	in sy	mptoms of joints			

Comparison 1. KOOS ADL: aquatic physical therapy versus no aquatic physical

therapy

	Aqua	Aquatic exercise			No aquatic exercise			Mean Difference		Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD.	Total	Weight	IV. Fixed, 95% CI		IV, Fixe	d, 95% CI	
Lund H 2008	62.7	11.96	27	61.1	11.44	27	17.9%	1.60 [-4.64, 7.84]			-	
Lund H 2008	62.7	11.96	27	64.1	11.5	25	17.1%	-1.40 [-7.78, 4.98]				
Rantalainen 2016	88	9.91	42	85	8.29	42	45.6%	3.00[-0.91, 6.91]				
Walter B 2017	87.7	97	43	86	14.6	44	0.8%	1.70 F27.61, 31.01]	-			+
Wang TJ 2011	76	16	26	69	18	26	8.1%	7.00 [-2.26, 16.26]				
Wang TJ 2011	76	16	26	82	14	26	10.4%	-6.00[-14.17, 2.17]			-	
Total (95%-C0			191			190	100.0%	1.37 [-1.27, 4.01]			-	
Heterogeneity: Chi* =	5.94, df	= 5 (P =	0.31); P	= 16%					-		1 1	
Test for overall effect	Z = 1.02	P = 0.3	11)						-20	-10 Favours (no aquatic)	Favours [aquatic]	20

Comparison 3. WOMAC physical function: aquatic physical therapy versus no

aquatic physical therapy

	Aqua	tic exerc	cise	No aquatic exercise				Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	50	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Dias J M 2017	36.3	19	.33	50.2	22.7	32	25.2%	-0.66 [-1.16, -0.16]		
Hale LA 2012	24	8.89	20	24.9	7.14	15	21.8%	-0.11 [-0.78, 0.56]		
Hinman RS 2007	598	316	36	656	373	35	25.8%	-0.17 [-0.63, 0.30]		
Kars Fertelli 2019	26.1	15.59	60	46.9	17.22	60	27.2%	-1.26 [-1.65, -0.87]		
Total (95% CI)			149			142	100.0%	-0.57 [-1.14, -0.01]	-	
Heterogeneity: Tau# =	0.27; C	hP=15.1	81, df =	3 (P = 0.0	001); I [#] = 8	81 %			1. 1. 1. 1. 1.	
Test for overall effect	Z = 1.98	$0^{\rm p} = 0.0$	15)						Favours [aquatic] Favours [no aqu	uatic]

Comparison 4. SF-36 physical function: aquatic physical therapy versus no aquatic

physical therapy

	Aquat	tic exerc	cise	No aqu	atic exer	cise		Mean Difference		Mean Di	fference	
Study or Subgroup	Mean	50	Total	Mean	SD	Total	Weight	IV, Fixed, 95% Cl		IV, Fixed	1. 95% CI	
Dias J M 2017	64.5	14.4	33	61.7	15.4	32	8.3%	2.80 [-4.45, 10.05]				_
Hinman RS 2007	25.7	10.6	36	24.9	10.3	35	18.5%	0.80 [-4.06, 5.66]			•	
Kars Fertelli 2019	70.8	24.71	41	64.84	18.23	42	5.0%	5.96 [-3.40, 15.32]				
Lim J Y 2010	50.4	19.3	24	57.3	23.7	22	2.8%	-6.90 [-19.46, 5.66]				
Lim J Y 2010	50.4	19.3	24	63.1	24.1	20	2.6%	-12.70 [-25.78, 0.38]	-			
Wang T J 2006	16	4.5	20	12.9	3.8	18	62.8%	3.10 [0.46, 5.74]				
Total (95% CI)			178			169	100.0%	2.11 [0.02, 4.20]			-	
Heterogeneity: Chi#=	8.40, df	= 5 (P =	0.14); P	= 41%					+	1	1	
Test for overall effect	Z=1.98	(P = 0.0	15)						-10	-D Emoure (no acustic)	Envoure Incustici	10

Comparison 2. Knee flexion muscle strength: aquatic physical therapy versus no

aquatic physical therapy

	Aquatic exercise No aquatic exercise						rcise Mean Differen			Mean Di	fference	
Study or Subgroup	Mean SD Total			Mean SD To			Weight	IV, Random, 95% CI	IV, Random, 95% Cl			
Dias J M 2017	25.9	9.6	33	26.1	11.3	32	23.8%	-0.20 [-5.30, 4.90]				
Kars Fertelli 2019	52.75	13.01	41	58.94	62.48	42	5.1%	-6.19 [-25.50, 13.12]	•			
Lim J Y 2010	24.3	11.6	24	27.5	11.1	22	20.2%	-3.20 [-9.76, 3.36]				
Lim J Y 2010	24.3	11.6	24	33.9	11.2	20	19.8%	-9.60 [-16.36, -2.84]	1.0			
Wang T J 2006	12.1	3.8	20	9.6	2.5	18	31.0%	2.50 [0.47, 4.53]				
Total (95% CI)			142			134	100.0%	-2.14 [-6.91, 2.63]		-	-	
Heterogeneity: Tau*:	18.06; 0	Chi# = 13	1.87, df=	4 (P=0	.008); P	71%			+	10		
Test for overall effect	Z=0.88	(P = 0.3)	(8)						-20	Favours (aquatic)	Favours Ino aquatici	~

Comparison 3. Hip abduction muscle strength: aquatic physical therapy versus no

aquatic physical therapy

	Aquati	c exere	cise .	No aqua	ttic exer	cise		Mean Difference		Mean	n Difference		
Study or Subgroup	Mean	SD.	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	_	IV, FI	ixed, 95% CI		
6.3.1 Left													
Hinman RS 2007	22.2	8.5	36	21	8	35	43.5%	1.20 [-2.64, 5.04]			-		
Suomi R 2003	72.8	26.5	10	61.8	34.8	10	0.9%	11.00 [-16.11, 38.11]	•		-		
Suomi R 2003	72.8	26.5	10	74.3	20.3	10	1.5%	-1.50 [-22.19, 19.19]	+				
Subtotal (95% CI)			56			55	45.9%	1.30 [-2.44, 5.04]		-			
Heterogeneity: Chi#=	0.56, df=	2 (P=	0.75); 1	= 0%							10000		
Test for overall effect	Z = 0.68	(P = 0.5	(0)										
6.3.2 Right													
Hinman RS 2007	22.7	8.3	36	20.3	6.8	35	51.6%	2.40 [-1.13, 5.93]			-		
Suomi R 2003	72.9	23.9	10	72.9	22.4	10	1.6%	0.00 [-20.30, 20.30]	+				- 10
Suomi R 2003	72.9	23.9	10	63.5	32.7	10	1.0%	9.40 [-15.70, 34.50]	+		-		
Subtotal (95% CI)			56			55	54.1%	2.46 [-0.98, 5.90]					
Heterogeneity: Chi# =	= 0.35, df =	2 (P =	0.84); P	= 0%							1.000		
Test for overall effect	Z = 1.40	(P = 0.1	6)										
Total (95% CI)			112			110	100.0%	1.93 [-0.60, 4.46]			-	-	
Heterogeneity: Chi#=	1.12, df=	5 (P =	0.95); (*	= 0%					+	t	-	1	-
Test for overall effect	Z=1.49	(P = 0.1)	4)						-10	-0 Eminute Inc. amus	Het Enurier	D Instantial	1
Test for subgroup dif	ferences:	Chi ² = I	0.20. df	= 1 (P = 0	65). P=	0%				r avours (no aqua	act + avours	fadnanc]	
a. 9 Forest plot of	aquatic p	physica	l thera	ov versus	no aqu	atic ph	vsical th	erapy interventions in	mu	scle strength			

Comparison 1. 6MWT: aquatic physical therapy versus no aquatic physical therapy Mean Difference Aquatic exercise No aquatic exercise Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Fixed, 95% CI IV, Fixed, 95% CI
 Himmer RS 2007
 441.72
 67.25
 36
 440.38
 79.03
 35
 30.6%
 1.34 [-37.36, 40.04]

 Wang TJ 2006
 380.4
 80.3
 20
 390.7
 88.6
 18
 15.7%
 -2.30 [-56.28, 51.66]

 Wang TJ 2006
 360.4
 80.3
 20
 390.7
 88.6
 18
 15.7%
 -2.30 [-56.28, 51.66]

 Wang TJ 2011
 306
 75.6
 22.61
 82.3
 26
 44.8%
 56.90 [17.38, 99.91]
 Wang TJ 2011 386 75.8 26 381 70.4 26 29.0% 5.00 - 34.76, 44.76 105 100.0% 15.58 [-5.82, 36.98] Total (95% CI) 108 Heterogeneity: Chi# = 4 76, df = 3 (P = 0.19), I# = 37% -100 -60 60 100 Test for overall effect Z = 1.43 (P = 0.15) Favours (no aquatic) Favours (aquatic) Comparison 2. Walking speed: aquatic physical therapy versus no aquatic physical therapy Aquatic exercise No aquatic exercise Mean Difference Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% CI IV, Random, 95% CI 1.42 1.25 32 0.73 0.84 32 40.9% 0.69[0.17,1.21] 1.83 0.16 43 1.76 0.17 44 59.1% 0.07[0.00,0.14] Silva 2008 Waller B 2017 Total (95% CI) 75 76 100.0% 0.32 [-0.27, 0.92] Heterogeneity: Tau^a = 0.16; Chi^a = 5.33; df = 1 (P = 0.02); l^a = 81% -4 -2 Test for overall effect Z = 1.06 (P = 0.29) Favours (no aquatic) Favours (aquatic) Comparison 3. Step test: aquatic physical therapy versus no aquatic physical therapy Aquatic exercise No aquatic exercise Mean Difference Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Fixed, 95% Cl IV, Fixed, 95% CI Hale LA 2012 12 3.22 20 11.4 2.9 15 39.6% 0.60[-1.44,2.64] 13 3 36 14 4 35 60.4% -1.00[-2.65,0.65] Hinman RS 2007 50 100.0% -0.37 [-1.65, 0.91] Total (95% CI) 55 Heterogeneity: Chi*= 1.43, df= 1 (P = 0.23); I*= 30% 10 10 -6 Test for overall effect: Z = 0.56 (P = 0.57) Favours [aquatic] Favours [no aquatic] Comparison 4. TUGT: aquatic physical therapy versus no aquatic physical therapy Aquatic exercise No aquatic exercise Mean Difference Mean Difference
 Study or Subgroup
 Mean
 SD
 Total
 Mean
 SD
 IV, Fixed, 95% CI Taglietti M 2017 11.4 0.7 31 12.4 0.8 29 88.7% -1.00[-1.38,-0.62] ٠ Total (95% CI) 87 79 100.0% -0.89 [-1.25, -0.53] Heterogeneity: Chi^a = 2.89, df = 2 (P = 0.24); l^a = 31% Test for overall effect: Z = 4.86 (P < 0.00001) Favours (aquatic) Favours (no aquatic) Fig. 10 Forest plot of aquatic physical therapy versus no aquatic physical therapy interventions in walking ability

Comparison 1. Body mass index and fat mass: aquatic physical therapy versus no

aquatic physical therapy

	Aquati	ic exer	cise	No aquatic exercise		Mean Difference			N	lean Differen	ce		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI		ľ	/, Fixed, 95%	CI	
8.1.1 BMI													
Lim J Y 2010	27.13	1.82	24	27	1.59	22	40.6%	0.13 [-0.86, 1.12]			+		
Lim J Y 2010	27.13	1.82	24	27.71	2.16	20	27.7%	-0.58 [-1.77, 0.61]			-		
Waller B 2017	26.2	3.9	43	27.1	3.6	44	15.8%	-0.90 [-2.48, 0.68]					
Subtotal (95% CI)			91			86	84.1%	-0.30 [-0.98, 0.39]			•		
Heterogeneity: Chi#=	1.50, df=	= 2 (P =	0.47); P	= 0%									
Test for overall effect	Z=0.85	(P=0.3	19)										
8.1.2 Fat Mass													
Lim J Y 2010	21.8	4.4	24	21.22	3.6	22	7.4%	0.58 [-1.74, 2.90]			-	-	
Lim J Y 2010	21.8	4.4	24	23.5	4.7	20	5.4%	-1.70 [-4.41, 1.01]		_			
Waller B 2017	24.8	8.8	43	26.4	8.1	44	3.1%	-1.60 [-5.16, 1.96]		_	-		
Subtotal (95% CI)			91			86	15.9%	-0.62 [-2.20, 0.96]			•		
Heterogeneity: Chi ² =	1.93, df=	= 2 (P =	0.38); P	= 0%									
Test for overall effect	Z=0.77	(P=0.4	4)										
Total (95% CI)			182			172	100.0%	.0.35 [.0.98, 0.28]			٠		
Heterogeneity: Chi#=	3.57, df=	= 5 (P =	0.61); P	= 0%				6 6 8	+	-		1	
Test for overall effect	Z=1.09	(P=0.2	(8)						+10	-5	U availat Fava	5	1(
Test for subaroup dif	ferences:	Chi ² =1	114 df	= 1 (P = 0	71) P=	0%				Favours la	qualicj Favo	nıa luo adr	auci
ig. 11 Forest plot o	faquatic	physic	al thera	apy versu	s no aqu	Jatic ph	nysical th	erapy intervention	s in bo	dy composit	ion		

Effects of Aquatic Therapy and Land-Based Therapy versus Land-Based Therapy Alone on Range of Motion, Edema, and Function after Hip or Knee Replacement: A Systematic Review and Meta-analysis

Alison J. Gibson, BPhys;^{*} Nora Shields, PhD, BSc (Hons), Grad Dip Stats, Grad Cert Higher Education[†]

Table 1 Summary of Studies

						Aquatic:land	
Author (Date)	PEDro score	Design	Setting	Arthroplasty type	No. of respondents	Sex, % male	Mean age, y
McAvoy (2009) ¹³	6	RCT	Outpatient	TKA	<mark>30 (15:15</mark>)		•
Stockton & Mengersen (2009) ¹⁴	4	Controlled trial	Acute inpatient	THA	48 (21:27)	48.0:48.0	65.5:62.8
Rahmann, Brauer, & Nitz (2009) ¹⁵	6	RCT	Acute inpatient	THA:TKA (15:20)	35 (18:17)	56.0: 29.4	69.4:70.4

 $\label{eq:RCT} \textit{RCT} = \textit{randomized controlled trial;} \ \textit{TKA} = \textit{total knee arthroplasty}, \ \textit{THA} = \textit{total hip arthroplasty}.$

Inclusion Criteria

- Participants had undergone any type of hip or knee arthroplasty
- •> 18 years
- Study compared AE and LE (comparison group completed LE alone)
- RCT
- English only

Table 2 Summary of Intervention Characteristics

	Ac	quatic therapy		ιι	and-based therapy.		Outcome		
Author	Frequency	Duration	Delivery	Frequency	Duration	Delivery	Impairment	Activity	
McAvoy (2009) ¹³	30 min, 2 × /wk	6 wk	Group	60 min, 2 × /wk	6 wk	Group	Edema Knee AROM & PROM Pain	KOOS	
Stockton & Mengersen (2009) ¹⁴	Daily Mean LOS = 7.9 (SD 1.6) d	Postoperative day 4–discharge Mean LOS = 8.1 (SD 2.6) d	1:1	Daily	Postoperative day 1–discharge	1:1	-	lowa Level of Assistance	
Rahmann, Brauer, & Nitz (2009) ¹⁵	Daily	Postoperative day 4–discharge	1:1	Daily	Postoperative day 1–discharge	1:1	Edema Knee AROM Strength: quads, hams, hip abductors	WOMAC 10MW TUG PSFS	
	Mean LOS = 7.4 (SD 1.6) d	Mean LOS = 8.3 (SD 1.9) d							

AROM = active range of motion; PROM = passive range of motion; KOOS = Knee Injury and Osteoarthritis Outcome Score; LOS = length of stay; WOMAC = Western Ontario and McMaster Universities Arthritis Index; 10MW = 10-metre walk test; TUG = timed up-and-go test; PSFS = Patient Specific Functional Scale.

Figure 2 Knee range of motion Standardised mean difference (95% CI) for the effect of aquatic physical therapy on range of motion for hip and knee arthroplasty by pooling data from two trials (n = 64). N = inverse variance; Std = standardised.

Intervention	No. of trials	No. of participants	Outcome	SMD (95% Cl), 12	Quality of evidence (GRADE)
Activities of daily living	2 ^{13,15}	64	KOOS lowa Level of Assistance WOMAC	0.53 (0.03–1.03), 0%	Moderate*
ROM Edema	2 ^{13,15} 2 ^{13,15}	64 64	ROM in degrees Lower limb circumference measurement	0.78 (0.27-1.29), 0% 0.66 (0.15-1.16), 0%	Moderate* Moderate*

Table 3 Quality Assessment of Meta-Analyses for Aquatic Therapy as an Adjunct versus Land-Based Therapy Alone

*Reason for downgrade: large Cl (>0.8).

SMD = standardized mean difference; GRADE = Grading of Recommendations Assessment, Development and Evaluation working group grades of evidence (see footnote); KOOS = Knee Injury and Osteoarthritis Outcome Score; WOMAC = Western Ontario and McMaster Universities Arthritis Index; ROM = range of motion.

Other thoughts on using water hip and knee dysfunction?

What are your "go to" strategies?

Any new ideas after seeing the research?

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

Aquatic Therapy for Edema Management

David M. Morris, PT, PhD. FAPTA

Chronic Venous Disease

- Common medical problem that can result in significant morbidity and mortality. The clinical presentation spans a spectrum from:
- Asymptomatic but cosmetically troublesome small ectatic veins (spider veins and reticular veins)
- ✓ Varicosities and edema
- Severe skin changes including fibrosing panniculitis, dermatitis, and ulceration.

Advanced Lipodermatosclerosis

Skin changes of Chronic Venous Insufficiency

Clinica	l classification
C ₁	Telangiectasias, reticular veins
C ₂	Varicose veins
C _{2r}	Recurrent varicose veins
C3	Edema
C ₄	Changes in skin and subcutaneous tissue secondary to chronic venous disease
C _{4a}	Pigmentation or eczema
C _{4b}	Lipodermatosclerosis or atrophie blanche
C _{4c}	Corona phlebectatica
C ₅	Healed
C ₆	Active venous ulcer
C _{6r}	Recurrent active venous ulcer
S	With symptoms attributable to venous disease
A	Absence of symptoms attributable to venous disease
Etiolog	y classification
Ep	Primary
Es	Secondary
Esi	Secondary (intravenous)
Ese	Secondary (extravenous)
Ec	Congenital
En	No cause identified
Anato	my classification*
As	Superficial veins (Tel, Ret, GSV _a , GSV _b , SSV, AASV, NSV)
Ad	Deep veins (IVC, CIV, IIV, EIV, PELV, CFV, DFV, FV, POPV, TIBV, PRV, ATV, PTV, MUSV, GAV, SOV)
Ap	Perforator veins (TPV, CPV)
A	No venous anatomic location identified

CEAP Classification

Lymphedema

- Abnormal accumulation of interstitial fluid and fibroadipose tissues resulting from reduced lymph transport because of injury, infection, cancer/cancer-related treatment, or congenital abnormalities of the lymphatic system
- Can be primary or secondary depending on etiology and presentations

Risk Factors

- Hereditary syndromes
- Genetic mutations
- Malignancy and its treatment
- Obesity
- Infection
- Trauma

(A) Patient with severe fibrotic primary lower extremity lymphedema with 14.2 liter volume excess.

(B) Outcome following first-stage direct excision using a modification of Homan's technique with indocyanine green fluorescent lymphography to preserve functional lymphatics.

Measurement – Limb Circumference

For the upper extremity:

- At the metacarpal-phalangeal joints (if edematous)
- Around the wrist
- ✓ 10 cm below the olecranon process
- 10 cm above the olecranon process

In the lower extremity:

- At the metatarsal-phalangeal joints (if edematous)
- ✓ 2 cm superior to the medial malleolus
- 10 cm above the superior pole of the patella
- ✓ 10 cm below the inferior pole of the patella

Measurement - Other

- Limb Volume
- Bioimpedence spectroscopy
- Functional status
- Other manifestations

HYDROSTATIC PRESSURE

Greater Depth = Greater Pressure

With Immersion

Increase in blood flow:
✓75% to thorax
✓25% to cardiac chamber
✓15% to brain

Randomized controlled trial on Dryland And Thermal Aquatic standardized exercise protocol for chronic venous disease (DATA study)

Erica Menegatti, PhD,^a Stefano Masiero, MD,^b Paolo Zamboni, MD,^a Giampiero Avruscio, MD,^c Mirko Tessari, PhD,^a Anselmo Pagani, BS,^a and Sergio Gianesini, MD, PhD,^{a,d} *Ferrara, Padua, and Padova, Italy; and Bethesda, Md*

Table I. Demographics and clinical characteristics of the study participants at baseline

	TW group (17 patients)	DL group (17 patients)	P value
Age, years	61.4 ± 10.8	60.1 ± 10.1	.7583
Sex (male/female)	5/12	4/13	.9999
BMI	26.8 ± 4.9	26.5 ± 3.3	.8507
Main symptom			
Heaviness	9/17	8/17	.9999
Achiness	3/17	2/17	.9999
Swelling	6/17	7/17	.9999
VCSS	9.5 ± 3.3	9.1 ± 3.2	.3342

0

BMI, Body mass index; DL, dryland; TW, thermal water; VCSS, Venous Clinical Severity Score.

Fig 2. A, Leg volume decreases after five exercise sessions in the thermal water (TW) immersion. B, Leg volume remains constant after five sessions of dryland (DL) exercises.

		TW group			DL group		
Session	Baseline, mL	End, mL	P intragroup	Baseline, mL	End, mL	P intragroup	P intergroup
1 _R	2355.9 ± 326.9	2088.2 ± 386.3	<.0001	2638.2 ± 324.3	2644 ± 328.3	.4308	<.0001
2 _R	2270.5 ± 328.9	2038.2 ± 351.6	<.0001	2661.8 ± 324.3	2667.6 ± 340	.6081	<.0001
3 _R	2232.4 ± 312.2	2029.4 ± 358.8	<.0001	2650 ± 306.8	2658 ± 305.5	.4553	<.0001
4 _R	2220.6 ± 334.5	2014.7 ± 359.6	<.0001	2661.8 ± 297.7	2673.5 ± 319.2	-2156	<.0001
5 _R	2173.5 ± 306.8	1923.5 ± 293.2	<.0001	2670.6 ± 328.4	2664.2 ± 337.6	.5794	<.0001
1 _L	2291.2 ± 312.4	2070.6 ± 396.9	<.0001	2694.1 ± 334.1	2700.0 ± 353.1	.4962	<.0001
2 _L	2217.6 ± 303.6	2026.5 ± 334.1	<.0001	2723.5 ± 351.8	2735 ± 351.2	.3321	<.0001
3 _L	2241.2 ± 360.2	2017.6 ± 384.0	<.0001	2714.7 ± 342.7	2723.5 ± 346.5	.4553	<.0001
4 _L	2211.8 ± 354.7	2008.8 ± 393.0	<.0001	2711.8 ± 350.2	2717.6 ± 355.7	.5794	<.0001
5 _L	2170.6 ± 324.5	1932.4 ± 363.1	<.0001	2688.2 ± 365.9	2700.0 ± 63.1	.2156	<.0001
Same and the second							

DL, Dryland; L, Left leg; R, right leg; TW, thermal water.

123

Exercise Protocol

- Warm-up cycling
- Tip-toe exercises (4 x 10 reps)
- Hip flex-ext (4 x 10 reps)
- Tip-toe on step (4 x 10 reps
- Forward/backward walking (5 min)
- Cycling-like single push in standing(5 min)
- Ankle flex-ext with knee bent to 90(4 x 10 reps)
- Cool-down cycling

Table III. Subcutaneous thickness measurements changes from baseline to the end of the exercise protocol and comparison between the study groups

		TW group			DL group	-	
Point	Baseline, mm	End, mm	P intragroup	Baseline, mm	End, mm	P intragroup	P intergroup
AR	16.1 ± 4.5	12.0 ± 4.8	<.0001	17.0 ± 4.3	16.9 ± 4.3	.1410	<.0001
B _R	11.9 ± 4.9	8.9 ± 3.5	<.0001	13.7 ± 4.3	13.5 ± 4.3	.0879	<.0001
CR	9.5 ± 4.2	7.0 ± 2.3	<.0001	10.9 ± 4.0	11.0 ± 3.8	.6775	<.0002
AL	15.4 ± 4.2	11.4 ± 4.1	<.0001	16.5 ± 3.4	16.4 ± 3.4	.4921	<.0001
BL	11.4 ± 4.5	8.3 ± 3.4	<.0001	13.2 ± 4.0	13.3 ± 3.9	.2156	<.0001
CL	9.6 ± 4.5	7.1 ± 3.1	<.0001	10.8 ± 4.2	10.9 ± 4.1	.1642	<.0001

DL, Dryland; L, Left leg; R, right leg; TW, thermal water.

Point A is 10 cm below the inguinal skin crease, point B is 10 cm above the superior margin of the knee, and point C is 5 cm below the inferior margin of the knee.

125

The randomized, controlled ATLANTIS trial of aquatic therapy for chronic venous insufficiency

Mohsen Sharifi, MD,^{a,b} R. Curtis Bay, PhD,^c Kaveh Karandish, MD,^a Farnaz Emrani, RN,^a Robert Snyder, AAS,^a and Siddharth D'Silva, BS,^a for the ATLANTIS Trial, *Mesa, Ariz*

126

Sharafi et al., 2020

Aquatic activity; AG, Aquatic Group; CG, Control Group; F/U, follow-up.

	Baseline		3 1	months	2 years	
	AG		CC	AG	CG	AG
Thigh, mean \pm SD, cm	65.07 ± 5.03		63.58 ± 5.20	62.10 ± 4.43	63.34 ± 4.73	61.67 ± 4.09
Between-group comparison		NA*		P	= .069	P = .393
Within-group comparison		NA			NA	NA
Leg, mean \pm SD, cm	44.38 ± 1.58	4	44.06 ± 1.70	43.33 ± 1.35	44.04 ± 1.43	43.11 ± 1.35
Between-group comparison		NA*		P	.001	P = .013
Within-group comparison		NA			NA	NA
VCSS, mean \pm SD	10.29 ± 2.73		9.18 ± 1.64	6.93 ± 1.80	8.92 ± 1.27	6.21 ± 1.39
Between-group comparison		NA*		P	1<0.001	P < .001
Within-group comparison		NA			NA	NA
Viallta, mean ± SD	9.05 ± 3.20		8.42 ± 1.66	5.56 ± 1.77	8.37 ± 1.31	5.05 ± 1.10
Between-group comparison		NA*		P	100. >	P < .001
Within-group comparison		NA			NA	NA
SF36-PHC, mean \pm SD	44.34 ± 2.55		46.12 ± 1.17	47.79 ± 1.45	46.27 ± 1.09	48.16 ± 1.51
Between-group comparison		NA*		P	100. >	P < .001
Within-group comparison		NA			NA	NA
VEINES-QOL, mean \pm SD	46.19 ± 2.27	9	46.62 ± 1.34	49.48 ± 1.41	46.67 ± 1.14	49.54 ± 1.38
Between-group comparison		NA*		P	100. >	P < .001
Within-group comparison		NA			NA	NA
VEINES-Sym, mean \pm SD	45.31 ± 2.18	4	45.60 ± 1.33	48.46 ± 1.29	45.53 ± 1.25	48.84 ± 1.34
Between-group comparison		NA*		P	100. >	P < .001
Within-group comparison		NA			NA	NA
Subjective Index, median (IQR)		NA		2.(2, 2)	1 (O, 1)	1 (0, 1)
Between-group comparison		NA*		P	100. >	P = .001
Within-group comparison		NA			NA	NA

Table II. Secondary efficacy end points with interval differences

AC, Aquatic Group; CC, Control Group; IQR, interquartile range; NA, not applicable; NA*, not applicable because differences at baseline in a randomized trial are considered due to chance; SD, standard deviation; SF36-PHC, Physical Health Component of the 36-Item Short Form Health Survey; VCSS, modified Venous Clinical Severity Score; VEINES-QOL, Venous Insufficiency Epidemiological and Economic Study Quality of Life score; VEINES-Sym, Venous Insufficiency Epidemiological and Economic Study Symptom score. Table III. Secondary efficacy end points between patients receiving 24 months vs 3 months of aquatic therapy

	3 mc	onths	2 y	ears	Difference (2 3 mo	2 years minus onths)
	AG-24	AG-3	AG-24	AG-3	AG-24	AG-3
Thigh, mean \pm SD, cm	62.54 ± 4.39	60.0 ± 4.15	61.88 ± 4.11	60.69 ± 4.0	-0.67 ± 1.09	0.69 ± 1.01
Between-group comparison	P =	.036	P =	.292	P <	.001
Within-group comparison	N	IA	N	IA	P < .001	P = .016
Leg, mean \pm SD, cm	43.39 ± 1.43	43.06 ± 0.85	43.05 ± 1.44	43.38 ± 0.72	-0.33 ± 0.83	0.31 ± 0.79
Between-group comparison	P =	.386	P =	.388	P =	.005
Within-group comparison	N	IA	N	IA	P = .001	P = .136
VCSS, mean \pm SD	7.01 ± 1.84	6.56 ± 1.59	6.23 ± 1.39	6.13 ± 1.46	-0.79 ± 1.20	-0.44 ± 0.81
Between-group comparison	P =	.366	P =	.793	P =	.271
Within-group comparison	N	IA	N	A	P < .001	P = .048
Viallta, mean \pm SD	5.64 ± 1.87	5.19 ± 1.22	5.13 ± 1.08	4.69 ± 1.14	-0.51 ± 1.40	-0.50 ± 0.97
Between-group comparison	P =	.356	P =	.142	P =	.986
Within-group comparison	N	IA	N	IA	P = .002	P = .056
SF36-PHC, mean \pm SD	47.71 ± 1.47	48.19 ± 1.33	48.15 ± 1.57	48.25 ± 1.24	0.44 ± 1.19	0.06 ± 0.77
Between-group comparison	P =	.230	P =	.806	P =	.228
Within-group comparison	N	A	N	IA	P = .002	P = .751
VEINES-QOL, mean \pm SD	49.51 ± 1.50	49.38 ± 0.89	49.57 ± 1.45	49.38 ± 0.96	0.07 ± 1.08	0.00 ± 0.97
Between-group comparison	P =	.642	P =	.604	P =	.820
Within-group comparison	N	IA	N	IA	P = .595	P = 1.0
VEINES-Sym, mean \pm SD	48.44 ± 1.36	48.56 ± 0.96	48.89 ± 1.42	48.56 ± 0.89	0.45 ± 0.93	0.00 ± 0.82
Between-group comparison	P =	.733	P =	.374	P =	.076
Within-group comparison	N	IA	N	IA	P < .001	P = 1.0
Subjective Index, median (IQR)	2.(2, 2)	2 (2, 2)	1 (0, 1)	0 (–1, 0)	-1 (-2, -1)	-2 (-3, -2)
Between-group comparison	P =	.726	P <	.001	P <	.001
Within-group comparison	N	IA	N	IA	P < .001	P < .001

AG-24, Aquatic Group patients completing 24 months of aquatic therapy n = 75; AG-3, Aquatic Group patients completing 3 months of aquatic therapy n = 16; IQR, interquartile range; NA, not applicable; SD, standard deviation; SF36-PHC, Physical Health Component of the 36-Item Short Form Health Survey; VCSS, modified Venous Clinical Severity Score; VEINES-QOL, Venous Insufficiency Epidemiological and Economic Study Quality of Life score; VEINES-Sym, Venous Insufficiency Epidemiological and Economic Study Symptom score.

LYMPHATIC RESEARCH AND BIOLOGY Volume 16, Number 1, 2018 © Mary Ann Liebert, Inc. DOI: 10.1089/lrb.2016.0056

Aquatic Therapy for People with Lymphedema: A Systematic Review and Meta-analysis

Wai Yeung, MPhty¹ and Adam I Semciw, PhD, BAPPLSci(Physio, Hons)¹⁻³

*Studies may have been excluded for failing to meet more than one inclusion criterion.

FIG. 1. Flow of studies through the review.

131

FIG. 3. SMD (95% CI) of effect of aquatic therapy after 3 months of training on UL physical function by pooling data from two studies and presented as an SMD (95% CI). UL, upper limb.

FIG. 2. SMD (95% CI) of effect of aquatic therapy after 3 months of training on lymphedema relative limb volume, pooling data from two studies and presented as an SMD (95% CI). CI, confidence interval; SMD, standardized mean difference.

Other thoughts on edema reduction using water?

What are your "go to" strategies?

Any new ideas after seeing the research?

THE UNIVERSITY OF ALABAMA AT BIRMINGHAM.

Aquatic Therapy for Stroke

David M. Morris, PT, PhD. FAPTA

Stroke

Manager of blond encode lark of blond free to effected area . Real-up of blond woods boblass of bit

Every year, more than **795,000 people** in the United States have a stroke. About 610,000 of these are first or new strokes.

Stroke

All strokes⁶

person aged over 25 years will suffer a stroke in their

Of all strokes, about 88% are ischaemic and 12% are haemorrhagic in nature.

In 2016, over 9.5 million new cases of ischaemic stroke occurred worldwide.

Strokes can happen at any age: Nearly 60% of all new ischaemic strokes happen in people younger than 70 years, and even 7% occur in people under 44 years.

Each year, 52% of new ischaemic strokes occur in men, 48% in women.

Annually, over 2.7 million people die from ischaemic stroke.

Stroke is the leading cause of serious, long-term disability. Every year, over 116 million years of healthy life is lost due to stroke.

Common issues after stroke

Right brain controls: Left body motor control Spatial recognition Insight and imagination

J	Let	t	b	<u>ai</u>	in	<u>CO</u>	nt	ro	5
									 _

Right body motor control Language and writing Logic & reasoning

Speech-language deficits

new strokes of all types each year.

Of all strokes, about 88%

are ischaemic and 12%

Memory deficits

Slow, cautious behavior Ischaemic stroke⁶

will suffer a stroke in their lifetime

Globally, every fourth Stroke is the second person aged over 25 years leading cause of death worldwide. Five and a half-million people die of stroke annually.

of serious, long-term disability. Every year, over 116 million years of healthy

Stroke is Separatial-perceptual deficits ^{IIII} Out the impulsive behavior

hemiparesis

Impaired comprehensi

Aware of deficits, depression, an

new cases of ischaemic

stroke occurred

worldwide.

Strokes can happen at Each year, 52% of new any age: Nearly 60% of all ischaemic strokes occur new ischaemic strokes in men. 48% in women. happen in people younger than 70 years, and even 7% occur in people under

44 years.

d judgement

o minimize problems

people die from Memory deficits

Annually, over 2.7 million

Movement Control Issues

- Hemiparesis
- 50% long term muscle weakness influencing ability to move
- Limited fine, dexterous control of hand and fingers limiting ADLs
- Up to 85% experience impaired proprioception and/or touch
- Movement and sensation damage extend beyond initial damage to the brain
 - Tightness, inelastic muscle properties
 - Limited ROM/Contractures
 - Over-excited reflex reactions
- Deconditioning is profound!

(A)	Aquatic	Effect	Lower	Upper	Relative	
	therapy	size	limit	limit	weight	
Overall (n = 691)						
Eyvaz et al., 2018	walking	0,09	-0,42	0,60	8,77	
Lee et al., 2018	treadmill	0,18	-0,53	0,88	4,68	-
Park et al., 2012	treadmill	0,23	-0,65	1,11	2,92	_
Lee et al., 2010	walking	0,29	-0,39	0,97	4,97	-
Zhang et al., 2016	concept	0,32	-0,35	0,98	5,26	
Tripp et al., 2014	concept	0,32	-0,44	1,09	3,95	
Chan et al.,2017	walking	0,38	-0,42	1,17	3,65	-
Chu et al., 2004	walking	0,39	-0,78	1,57	1,75	_
lan et al., 2018	treadmill	0,43	-0,45	1,32	2,92	-
Noh et al., 2008	concept	0,51	-0,39	1,40	2,92	
ark et al., 2011b	walking	0,64	0,04	1,23	6,73	
(um et al., 2017	treadmill	0,66	-0,11	1,42	4,09	
Park et al., 2011a	walking	0,69	0,07	1,30	6,43	
ialeh et al., 2019	walking	0,81	0,23	1,39	7,31	
'hu et al., 2016	walking	0,85	0,07	1,64	4,09	
Cha et al., 2017	concept	0,92	0,04	1,81	3,22	
(im et al., 2015b	walking	0,99	0,06	1,92	2,92	
Han et al., 2013	walking	1,05	0,52	1,59	9,06	
Park et al., 2016	concept	1,12	0,28	1,90	4,09	
ung et al., 2014	walking	1,13	0,36	1,91	4,39	
Funari et al., 2014	concept	2,09	1,17	3,02	5,85	
Subtotal	treadmill	0,37	-0,42	1,17	14,62	-
Subtotal	walking	0,66	0,01	1,31	60,09	
Subtotal	concepts	0,96	0,13	1,77	25,29	
otal		0,70	-0,02	1,41	100,00	
Subgroup heterogene	eity: 1 ² = 11.4%					

$$\begin{array}{c} 8,77 \\ 4,68 \\ 2,92 \\ 4,97 \\ 5,26 \\ 3,95 \\ 3,65 \\ 1,75 \\ 2,92 \\ 3,92 \\ 4,99 \\ 4,$$

Previous Metanalyses/Reviews (at least 4)

- Results indicated aquatic therapy is superior to land-based therapy in:
- 🖌 Gait
- ✔ Balance
- ✔ Independence with ADLs
- Mobility
- ✔ Muscular Strength
- ✔ Aerobic Capacity
- ✔ Body Structure and Function
- No difference in Quality-of-Life Measures

Previous Metanalyses/Reviews (at least 4)

- Limitations/Gaps
- ✓ No comparison of different forms of aquatic therapy
- ✓ No information on non-physical deficits (e.g., depression)
- ✓ No information on muscle tone/spasticity

Aquatic therapy in stroke rehabilitation: systematic review and meta-analysis

Acta Neuro Scandinavica, Volume: 143, Issue: 3, Pages: 221-241, First published: 03 November 2020, DOI: (10.1111/ane.13371)
Outcome Measures Used (N=28)

Categories	# Trials
Balance	22
Walking Ability	19
Muscular Strength	7
ADL Independence	5
Proprioception	3
HRQL (e.g., SF-36, EQ-5D)	5
Physiological Indicators (e.g., arterial stiffness, blood pressure, EMG)	2
Cardiorespiratory Fitness (e.g., Graded Treadmill testing, Max ergometer testing)	3
Spasticity	1

Effect Size

Effect Size = <u>Mean of experimental group - Mean of Control group</u> Standard deviation

Small = .2

Medium = .5

Large = .8

Comparison with no Intervention

- 6 Studies
- 244 participants
- 30 days 3.6 years post stroke
- Aquatic Therapy is effective in:
- ✓ Walking
- ✔ Balance
- Emotional status and HRQL
- ✔ Spasticity
- Physiological indicators

Aquatic therapy in stroke rehabilitation: systematic review and meta-analysis

Acta Neuro Scandinavica, Volume: 143, Issue: 3, Pages: 221-241, First published: 03 November 2020, DOI: (10.1111/ane.13371)

Comparison to Land-Based Interventions

- 21 Trials
- 691 participants
- 24 weeks > 12 months
- Aquatic Therapy superior to Land-based
- Similar effects on Independence in ADLS
 - Balance
 - Walking
 - Muscular Strength
 - Proprioception
 - HRQL
 - Physiological Indicators
 - Cardiorespiratory fitness
- Water-based therapy concepts (Halliwick, Ai Chi, Bad Ragaz) most effective
- Aquatic Treadmill least effective

Overall

(B)	Aquatic	Effect	Lower	Upper	Relative					
Gait (n = 400)	therapy	Size	mm	mm	weight					
Eyvaz et al., 2018	walking	-0.24	-0,74	0,27	15,00	-	0			
Chan et al.,2017	walking	0,00	-0,78	0,79	6,25	_				
Park et al., 2012	treadmill	0,26	-0,63	1,14	5,00	-				
Cha et al., 2017	concept	0,34	-0,50	1,18	5,50					
Kum et al., 2017	treadmill	0,45	-0,31	1,20	7,00		-	-		
Chu et al., 2004	walking	0,45	-0,71	1,62	3,00	-)	-	
Han et al., 2018	treadmill	0,47	-0,42	1,36	5,00			<u> </u>		
Noh et al., 2008	concept	0,62	-0,27	1,52	5,00			0	-	
Tripp et al., 2014	concept	0,65	-0,13	1,43	6,75		-	<u> </u>		
Zhu et al., 2016	walking	0,70	-0,08	1,48	7,00		-	-o		
Funari et al., 2014	concept	0,91	0,25	1,57	10,00		-	-0	-	
Saleh et al., 2019	walking	0,99	0,40	1,58	12,50			_0_	-	
Kim et al., 2015b	walking	1,04	0,11	1,97	5,00		-	-0-		
Park et al., 2016	concept	1,09	0,28	1,90	7,00			<u> </u>		
Subtotal	treadmill	0,40	-0,43	1,23	17,00		-			
Subtotal	walking	0,42	-0,27	1,10	48,75		<	2		
Subtotal	concepts	0,76	-0,01	1,54	34,25		\leq	>	-	
Total		0,53	-0,21	1,27	100,00		-	10000		
Subgroup heterogene	ity: I ² = 32.1%	105775				-1	0	1	2	3

Balance

(B)	Aquatic therapy	Effect	Lower	Upper	Relative
Gait (n = 400)					
Eyvaz et al., 2018	walking	-0,24	-0,74	0,27	15,00
Chan et al.,2017	walking	0,00	-0,78	0,79	6,25
Park et al., 2012	treadmill	0,26	-0,63	1,14	5,00
Cha et al., 2017	concept	0,34	-0,50	1,18	5,50
Kum et al., 2017	treadmill	0,45	-0,31	1,20	7,00
Chu et al., 2004	walking	0,45	-0,71	1,62	3,00
Han et al., 2018	treadmill	0,47	-0,42	1,36	5,00
Noh et al., 2008	concept	0,62	-0,27	1,52	5,00
Tripp et al., 2014	concept	0,65	-0,13	1,43	6,75
Zhu et al., 2016	walking	0,70	-0,08	1,48	7,00
Funari et al., 2014	concept	0,91	0,25	1,57	10,00
Saleh et al., 2019	walking	0,99	0,40	1,58	12,50
Kim et al., 2015b	walking	1,04	0,11	1,97	5,00
Park et al., 2016	concept	1,09	0,28	1,90	7,00
Subtotal	treadmill	0,40	-0,43	1,23	17,00
Subtotal	walking	0,42	-0,27	1,10	48,75
Subtotal	concepts	0,76	-0,01	1,54	34,25
Total		0,53	-0,21	1,27	100,00

Subgroup heterogeneity: I² = 32.1%

Gait

Muscular function/st	rength of lower	limbs (n	= 188)		
Eyvaz et al., 2018	walking	-0,04	-0,55	0,46	31,91
Chu et al., 2004	walking	0,29	-0,86	1,45	6,38
Zhang et al., 2016	concept	0,32	-0,35	0,98	19,15
Lee et al., 2018	treadmill	0,32	-0,38	1,03	17,02
Kum et al., 2017	treadmill	0,48	-0,27	1,24	14,89
Noh et al., 2008	concept	0,49	-0,40	1,39	10,64
Subtotal	walking	0,01	-0,60	0,63	38,30
Subtotal	concepts	0,38	-0,37	1,13	29,79
Subtotal	treadmill	0,40	-0,33	1,13	31,91
Total		0,25	-0,45	0,94	100,0
Subgroup heterogene	eity: I ² = 0.0%				

Muscular Function/Strength

ADL independence (r	n = 159)					
Eyvaz et al., 2018	walking	-0,10	-0,61	0,40	37,74	_ <u>O</u>
Lee et al., 2018	treadmill	-0,02	-0,72	0,68	20,13	•
Tripp et al., 2014	concept	0,18	-0,58	0,94	16,98	
Han et al., 2018	treadmill	0,26	-0,62	1,14	12,58	
Kim et al., 2015b	walking	0,97	0,04	1,89	12,58	
Subtotal	treadmill	0,09	-0,68	0,85	32,70	
Subtotal	walking	0,17	-0,45	0,78	50,31	\bigcirc
Subtotal	concepts	0,18	-0,58	0,94	16,98	$\langle \rangle$
Total		0,14	-0,55	0,83	100,00	and the second
Subgroup heterogen	eity: I ² = 65.4%					1

-1 0 1 2 3

ADL Independence

Proprioception (n = 1	24)								
Kum et al., 2017	treadmill	0,62	0,11	1,13	74,19	100	-		
Park et al., 2011a	walking	0,93	0,15	1,72	16,13	_	-	-0	
Han et al., 2013	walking	1,05	0,42	1,68	9,68		_		
Subtotal	treadmill	0,62	0,11	1,13	74,19	-			
Subtotal	walking	0,98	0,25	1,70	25,81				
Total	-1900 A (1975)	0,71	0,14	1,28	100,00	-			
Subgroup heterogene	eity: 1 ² = 44.0%								
						0		1	2

					favours of	ther therapy	favours aquatic th	erapy
						-1	0	1
Subgroup heterogen	eity: I ² = 0.0%							
Total		0,23	-0,41	0,86	100,00			a de la come
Eyvaz et al., 2018	walking	0,30	-0,21	0,81	34,78			132
Lee et al., 2018	treadmill	0,19	-0,51	0,89	65,22			
Health related qualit	y of life (n = 92)						-	

HRQOL

APTA Academy of Aquatic Physical Therapy

Physiological Factors/Cardiorespiratory Fitness

TOPICS IN STROKE REHABILITATION, 2017 VOL. 24, NO. 4, 228-235 http://dx.doi.org/10.1080/10749357.2016.1251742

The effect of water-based exercises on balance in persons post-stroke: a randomized controlled trial

Kelvin Chan^a, Chetan P. Phadke^{a,b,c} 🐵, Denise Stremler^a, Lynn Suter^a, Tim Pauley^a, Farooq Ismail^{a,b} and Chris Boulias^{a,b}

^aWest Park Healthcare Centre, Toronto, Canada; ^bFaculty of Medicine, University of Toronto, Toronto, Canada; ^cFaculty of Health, York University, Toronto, Canada

ABSTRACT

Objective: Water-based exercises have been used in the rehabilitation of people with stroke, but little is known about the impact of this treatment on balance. This study examined the effect of water-based exercises compared to land-based exercises on the balance of people with sub-acute stroke.

Methods: In this single-blind randomized controlled study, 32 patients with first-time stroke discharged from inpatient rehabilitation at West Park Healthcare Centre were recruited. Participants were randomized into W (water-based + land; n = 17) or L (land only; n = 15) exercise groups. Both groups attended therapy two times per week for six weeks. Initial and progression protocols for the water-based exercises (a combination of balance, stretching, and strengthening and endurance training) and land therapy (balance, strength, transfer, gait, and stair training) were devised. Outcomes included the Berg Balance Score, Community Balance and Mobility Score, Timed Up and Go Test, and 2 Minute Walk Test.

Results: Baseline characteristics of groups W and L were similar in age, side of stroke, time since stroke, and wait time between inpatient discharge and outpatient therapy on all four outcomes. Pooled change scores from all outcomes showed that significantly greater number of patients in the W-group showed improvement post-training compared to the L-group (p < 0.05). More patients in W-group showed change scores exceeding the published minimal detectable change scores.

Discussion: A combination of water- and land-based exercises has potential for improving balance. The results of this study extend the work showing benefit of water-based exercise in chronic and less-impaired stroke groups to patients with sub-acute stroke.

KEYWORDS Hydrotherapy; stroke; postural balance

Land-based exercises
Unsupported standing for 2 min
Weight shifting side to side for 2 min
Weight shifting in walk standing for 2 min
Reach to different directions for 2 min
Walk side steps for 20 ft
Walk backwards for 20 ft
Stand with one foot in front for 1 min
Stand on one foot for 30 s
Walk on spot on foam/mini-trampoline for 1 min
Tandem walk for 20 ft
Place alternate foot on stool for 8 times
Side steps with cross over for 20 ft
Walk on different surfaces (foam, mini-trampoline, 6 inches wooden block) for a length of 20 ft
Walk and pick up five bean-bags spread over 20 ft
Balance on rocker board for 30 s
180 degrees tandem pivot first towards right and then left
Lateral foot scooting for 10 ft
Walking and look away on command
Hop forward for 10 ft

Participants/Interventions

- 32 participants in sub-acute phase after stroke
- Water + Land (n=17)
- ✓ 30 min/session water + 30 min/session land; 2x/week; 6 weeks
- Land only (n=18)
- ✓ 60 min/session land; 2x/week; 6 weeks

Land Based Activities

Water-based exercises
Unsupported standing with feet hip width apart for 10 s moving up to 2 min in deep water
Unsupported standing with feet together for 10 s moving up to 2 min in deep water
Tandem stance for 10 s moving up 2 min in deep water
Marching on the spot for 30 s moving up to 2 min in deep water – no hands on the bar
Side steps for 13 ft in deep water
Walk backwards for 13 ft in deep water
Stand on one foot for 10 s moving up to 1 min in deep water
Stand on one foot for 10 s moving up to 1 min in shallow water
Tandem walk for 13 ft in deep water
Tandem walk for 13 ft in shallow water
Side steps with cross over for 13 ft in deep water
Side steps with cross over for 13 ft in shallow water
Placing alternate foot on step 10 times
Tossing beach ball 10 times in deep water
Tossing beach ball 10 times in shallow water

Water-Based Activities

Outcome Measures

- Berg Balance Scale
- Community Balance and Mobility Score
- Timed Up and Go
- 2-minute Walk Test

Figure 3. Percentage of patients with a clinically meaningful change score.

Authors:

Yue Zhang, MD Yi-Zhao Wang, MS Li-Ping Huang, PhD Bei Bai, MPH Shi Zhou, PhD Miao-Miao Yin, MD Hua Zhao, BS Xiao-Na Zhou, MD Hong-Tu Wang, MD

Affiliations:

From the Department of Rehabilitation, Huanhu Hospital, Tianjin, China YZ, Y-ZW, M-MY, HZ, X-NZ, H-TW): Department of Health and Exercise Science, Tianjin University of Sport, China (L-PH); Department of Science and Technology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China (BB); and Department of Exercise Science and Sport Management School of Health and Human Sciences, Southern Cross University, Lismore, Australia (SZ).

Correspondence:

All correspondence and requests for reprints should be addressed to: Li-Ping Huang, PhD, Department of Health and Exercise Science, Tianjin University of Sport, No. 51, Weijinnanlu, Hexi District, Tianjin, 300381 China.

Disclosures:

This research was supported by grants from Tianjin Higher Education Innovative Team Fund and China National Key Technology R&D Program (2012BAK21B00). Financial disclosure statements have been obtained, and no conflicts of interest have been reported by the authors or by any individuals in control of the content of this article.

ORIGINAL RESEARCH ARTICLE

Aquatic Therapy Improves Outcomes for Subacute Stroke Patients by Enhancing Muscular Strength of Paretic Lower Limbs Without Increasing Spasticity

Stroke

A Randomized Controlled Trial

ABSTRACT

Zhang Y, Wang Y-Z, Huang L-P, Bai B, Zhou S, Yin M-M, Zhao H, Zhou X-N, Wang H-T: Aquatic therapy improves outcomes for subacute stroke patients by enhancing muscular strength of paretic lower limbs without increasing spasticity: a randomized controlled trial. Am J Phys Med Rehabil 2016;95:840–849.

Purpose: The aim of this study was to evaluate the effects of an aquatic exercise program designed to enhance muscular strength in paretic lower limbs in subacute stroke patients.

Method: Thirty-six subacute stroke patients were randomly divided to a conventional or an aquatic group (n = 1.8 each). Outcome measures were assessed at baseline and after 8 wks of training. For the paretic lower limbs, maximum isometric voluntary contraction strength of the rectus femoris and biceps femoris caput longus and the tibialis anterior and lateral gastrocnemius was measured. Cocontraction ratios during knee extension and flexion and ankle dorsiflexion and plantarflexion were calculated respectively. In addition, Modified Ashworth Scale, Functional Ambulation Category, and Barthel Index were assessed.

Results

- Water + Land Group -
- significantly better outcomes compared to land only with more exceeding the published minimal detectable change scores

		Con	ventional Group		A	quatic Group	Pretreatment	Posttreatment Comparison	
Variable		Pretreatment	Posttreatment	Р	Pretreatment	Posttreatment	р	Between-Groups P Value	Between-Groups P Value
Knee	Extension torque, N m	15.8 ± 4.8 (12.37-19.17)	16.9 ± 5.1 (13.21-20.50)	0.207	15.8 ± 3.8 (13.02-18.49)	20.8 ± 4.9 (17.30-24.26)	0.000%	0.993	0.002^{b}
	Flexion torque, N m	9.4 ± 3.6 (6.82-11.95)	10.4 ± 3.6 (7.82-12.95)	0.035 ^d	9.5 ± 2.8 (7.49-11.43)	10.4 ± 2.6 (8.56-12.26)	0.027^{a}	0.962	0.936
	Extension CR, %	25.9 ± 9.5 (19.10-32.71)	24.3 ± 9.7 (17.40-31.23)	0.081	28.6 ± 9.9 (21.52-35.72)	17.1 ± 6.3 (12.57-21.56)	0.000^{9}	0.540	0.000 ⁸
	Flexion CR, %	32.2 ± 11.3 (24.12-40.28)	27.5 ± 9.1 (21.01 - 34.01)	0.441	29.1 ± 8.3 (23.14-34.96)	24.4 ± 7.4 (19.18-29.70)	0.158	0.487	0.991
Ankle	Dorsiflexion torque, N m	3.4 + 1.1 (2.58-4.20)	3.8 ± 0.9 (3.11-4.40)	0.042°	3.4 ± 1.1 (2.66-4.20)	3.8 ± 1.3 (2.82-4.69)	0.036	0.938	0.841
	Plantarflexion torque, N m	8.2 ± 2.6 (6.38-10.11)	7.3 ± 2.4 (5.63-9.04)	0.074	8.1 ± 3.9 (5.36-10.93)	10.1 ± 3.3 (7.72-12.39)	0.014^{a}	0.946	0.002^{b}
	Dorsiflexion CR, %	15.3 ± 4.8 (11.87-18.71)	13.5 ± 5.2 (9.70-17.21)	0.347	16.6 ± 5.8 (12.50-20.74)	14.1 ± 4.8 (10.68-17.56)	0.352	0.582	0.835
	Plantarflexion CR, %	45.3 ± 17.0 (33.15-57.50)	39.2 ± 16.0 (27.75-50.71)	0.349	44.3 ± 16.0 (32.82-55.73)	38.6 ± 10.4 (31.19-46.01)	0.250	0.889	0.958

Data are presented as mean ± SD (95% CI).

"Significant difference between pretreatment and posttreatment in each group.

^bSignificant difference between the aquatic group and the conventional group posttreatment.

CI indicates confidence interval,

MIVC torque and CR of knee extension and flexion and ankle dorsiflexion and plantar flexion at baseline and after 8 wks of treatment

Participants/Interventions

- 36 in subacute phase of recovery (3-6 mos)
- Aquatic Intervention (n=18)
- ✓ 40 min/session; 5x/week; 8 weeks
- ✓ 5 minute warm-up
- ✔ 35 min exercise
 - 5 min Halliwick activities
 - 6 exercises
- Control group (n=18)
- ✓ 40 min/session; 5x/week; 8 weeks
- ✓ Structured land-based exercises

Outcome Measures

- Maximum isometric contraction
- Co-contraction ratios
- Modified Ashworth Scale (hypertonicity)
- Functional Ambulation Category
- Barthel Index

natureresearch

OPEN The effects of Ai Chi for balance in

individuals with chronic stroke: a randomized controlled trial

Pei-Hsin Ku¹, Szu-Fu Chen², Yea-Ru Yang¹, Ta-Chang Lai^{3*} & Ray-Yau Wang^{1*}

This study investigated the effectiveness of Ai Chi compared to conventional water-based exercise on balance performance in individuals with chronic stroke. A total of 20 individuals with chronic stroke were randomly allocated to receive either Ai Chi or conventional water-based exercise for 60 min/time. 3 times/week, and a total of 6 weeks. Balance performance assessed by limit of stability (LOS) test and Berg balance scale (BBS). Fugl-Meyer assessment (FMA) and gait performance were documented for lower extremity movement control and walking ability, respectively. Excursion and movement velocity in LOS test was significantly increased in anteroposterior axis after receiving Ai Chi (p = 0.005 for excursion, p = 0.013 for velocity) but not conventional water-based exercise. In particular, the improvement of endpoint excursion in the Ai Chi group has significant inter-group difference (p = 0.001). Both groups showed significant improvement in BBS and FMA yet the Ai Chi group demonstrated significantly better results than control group (p = 0.025). Ai Chi is feasible for balance training in stroke, and is able to improve weight shifting in anteroposterior axis, functional balance, and lower extremity control as compared to conventional water-based exercise.

Results

- Aquatic Intervention group
- ✓ Higher knee extension and ankle plantarflexion torque
- ✔ Lower knee extension co-contraction ratio
- Functional Ambulation Category scores
- ✔ Barthel Index
- Modified Ashworth Scale scores did not change

		Con	ventional Group		A	quatic Group	Pretreatment	Posttreatment	
Variable		Pretreatment	Posttreatment	P	Pretreatment	Posttreatment	р	Between-Groups P Value	Between-Groups P Value
Knee	Extension torque, N m	15.8 ± 4.8 (12.37-19.17)	16.9 ± 5.1 (13.21-20.50)	0.207	15.8 ± 3.8 (13.02-18.49)	20.8 ± 4.9 (17.30-24.26)	0.000^{s}	0.993	0.002^{h}
	Flexion torque, N m	9.4 ± 3.6 (6.82–11.95)	10.4 ± 3.6 (7.82-12.95)	0.035 ^d	9.5 ± 2.8 (7.49-11.43)	10.4 ± 2.6 (8.56-12.26)	0.027^{a}	0.962	0.936
	Extension CR, %	25.9 ± 9.5 (19.10-32.71)	24.3 ± 9.7 (17.40-31.23)	0.081	28.6 ± 9.9 (21.52-35.72)	17.1 ± 6.3 (12.57-21.56)	0.000^{a}	0.540	0.000^{b}
	Flexion CR, %	32.2 ± 11.3 (24.12-40.28)	27.5 ± 9.1 (21.01 - 34.01)	0.441	29.1 ± 8.3 (23.14-34.96)	24.4 ± 7.4 (19.18-29.70)	0.158	0.487	0.991
Ankle	Dorsiflexion torque, N m	3.4 ± 1.1 (2.58-4.20)	3.8 ± 0.9 (3.11-4.40)	0.042°	3.4 ± 1.1 (2.66-4.20)	3.8 ± 1.3 (2.82-4.69)	0.036"	0.938	0.841
	Plantarflexion torque, N m	8.2 ± 2.6 (6.38-10.11)	7.3 ± 2.4 (5.63-9.04)	0.074	8.1 ± 3.9 (5.36-10.93)	10.1 ± 3.3 (7.72-12.39)	0.014^{a}	0.946	0.002^{b}
	Dorsiflexion CR, %	15.3 ± 4.8 (11.87-18.71)	13.5 ± 5.2 (9.70-17.21)	0.347	16.6 ± 5.8 (12.50-20.74)	14.1 ± 4.8 (10.68–17.56)	0.352	0.582	0.835
	Plantarflexion CR, %	45.3 ± 17.0 (33.15-57.50)	39.2 ± 16.0 (27.75-50.71)	0.349	44.3 ± 16.0 (32.82–55.73)	38.6 ± 10.4 (31.19-46.01)	0.250	0.889	0.958

Data are presented as mean ± SD (95% CI).

"Significant difference between pretreatment and posttreatment in each group.

⁶Significant difference between the aquatic group and the conventional group posttreatment.

CI indicates confidence interval,

MIVC torque and CR of knee extension and flexion and ankle dorsiflexion and plantar flexion at baseline and after 8 wks of treatment

Participants

- 20 in chronic phase of recovery (> 6 mos)
- 60 min/session; 3x/week; 6 weeks
- Ai Chi (n=10)
- ✔ 3 Katas warm up
- ✓ 3-4 Katas; 10-15 repetitions
- ✔ Gait training for 15 minutes
- Conventional Aquatic Exercise (n=10)
- ✓ Stretching
- ✔ Resistance
- ✔ Gait training

Outcome Measures

- Limits of Stability SMART Balance System
- Berg Balance Scale
- GaitRite System
- Fugl-Meyer Assessment

natureresearch

OPEN The effects of Ai Chi for balance in individuals with chronic stroke: a randomized controlled trial

Pei-Hsin Ku¹, Szu-Fu Chen², Yea-Ru Yang¹, Ta-Chang Lai^{3*} & Ray-Yau Wang^{1*}

This study investigated the effectiveness of Ai Chi compared to conventional water-based exercise on balance performance in individuals with chronic stroke. A total of 20 individuals with chronic stroke were randomly allocated to receive either Ai Chi or conventional water-based exercise for 60 min/time, 3 times/week, and a total of 6 weeks. Balance performance assessed by limit of stability (LOS) test and Berg balance scale (BBS). Fugl-Meyer assessment (FMA) and gait performance were documented for lower extremity movement control and walking ability, respectively. Excursion and movement velocity in LOS test was significantly increased in anteroposterior axis after receiving Ai Chi (p = 0.005 for excursion, p = 0.013 for velocity) but not conventional water-based exercise. In particular, the improvement of endpoint excursion in the Ai Chi group has significant inter-group difference (p = 0.001). Both groups showed significant improvement in BBS and FMA yet the Ai Chi group demonstrated significantly better results than control group (p = 0.025). Ai Chi is feasible for balance training in stroke, and is able to improve weight shifting in anteroposterior axis, functional balance, and lower extremity control as compared to conventional water-based exercise.

Results

- Limits of Stability SMART Balance System
- ✔ Ai Chi group significantly improved
- Berg Balance Scale
- ✓ Both groups improved with AI Chi group improving more
- GaitRite System
- ✔ Ai Chi group improved with speed and stride length
- ✓ Conventional group improved in stride length
- Fugl-Meyer Assessment
- ✓ Both groups improved with AI Chi group improving more

Aquatic therapy in stroke rehabilitation: systematic review and meta-analysis

Acta Neuro Scandinavica, Volume: 143, Issue: 3, Pages: 221-241, First published: 03 November 2020, DOI: (10.1111/ane.13371)

Other thoughts on balance recovery using water? What are your "go to" strategies? Any new ideas after seeing the research?